Defense Advanced Research Projects AgencyTagged Content List

Ground Systems

Manned and unmanned terrestrial systems, including vehicles, robotics and supporting technologies

Showing 19 results for Ground + Unmanned RSS
The DARPA Urban Challenge was held on November 3, 2007, at the former George AFB in Victorville, Calif. Building on the success of the 2004 and 2005 Grand Challenges, this event required teams to build an autonomous vehicle capable of driving in traffic, performing complex maneuvers such as merging, passing, parking, and negotiating intersections. As the day wore on, it became apparent to all that this race was going to have finishers. At 1:43 pm, “Boss”, the entry of the Carnegie Mellon Team, Tartan Racing, crossed the finish line first with a run time of just over four hours. Nineteen minutes later, Stanford University’s entry, “Junior,” crossed the finish line. It was a scene that would be repeated four more times as six robotic vehicles eventually crossed the finish line, an astounding feat for the teams and proving to the world that autonomous urban driving could become a reality. This event was groundbreaking as the first time autonomous vehicles have interacted with both manned and unmanned vehicle traffic in an urban environment.
In collaboration with the Department of Defense’s Joint Improvised Explosive Device Defeat Organization (JIEDDO), DARPA initiated the Vehicle and Dismount Exploitation Radar (VADER) program to design and deploy a radar system for unmanned aerial vehicles (UAVs) or small manned aircraft. Developed for DARPA by Northrop Grumman Electronic Systems, VADER provided synthetic aperture radar and ground moving-target indicator data to detect, localize, and track vehicles and dismounted troops.
At the break of dawn on March 13, 2004, 15 vehicles left a starting gate in the desert outside of Barstow, Calif., to make history in the DARPA Grand Challenge, a first-of-its-kind race to foster the development of self-driving ground vehicles. The immediate goal: autonomously navigate a 142-mile course that ran across the desert to Primm, Nev. The longer-term aim was to accelerate development of the technological foundations for autonomous vehicles that could ultimately substitute for men and women in hazardous military operations, such as supply convoys.
Today's dismounted squads use many different technologies to gather and share information. In many instances, however, these valuable but disparate inputs are not well integrated, leaving squad members without the degree of real-time situational awareness and support for decision-making that warfighters typically experience while on board aircraft and ships and in vehicles.
To succeed in their missions, military units must have a robust, multi-faceted picture of their operational environments, including the location, nature and activity of both threats and allied forces around them. Technology is making this kind of rich, real-time situational awareness increasingly available to airborne and other vehicle-assigned forces, along with a capacity to deploy precision armaments more safely, quickly and effectively. Dismounted infantry squads, however, have so far been unable to take full advantage of some of these highly effective capabilities because many of the technologies underlying them are too heavy and cumbersome for individual Soldiers and Marines to carry or too difficult to use under demanding field conditions.