Defense Advanced Research Projects AgencyTagged Content List

Ground Systems

Manned and unmanned terrestrial systems, including vehicles, robotics and supporting technologies

Showing 15 results for Ground + History RSS

The M16 Assault Rifle is the standard-issue shoulder weapon in the U.S. military. Designed to fire small, high-velocity rounds (5.56 mm caliber vs. 7.62 mm), the weapon is relatively small and light, thereby significantly decreasing the overall load warfighters needed to carry.

The M16 is based on a design (the Colt AR-15) that had already been rejected by the Chief of Staff of the Army in favor of the heavier 7.62 mm M14. Colt brought the weapon to DARPA in 1962.

Through Project AGILE, DARPA purchased 1,000 AR-15s and issued them to combat troops in Southeast Asia for field trials, to prove that the high-velocity 5.56 mm round had satisfactory performance. The subsequent DARPA report documenting the lethality of the AR-15 was instrumental in motivating the Secretary of Defense to reconsider the Army’s decision and this led to a the first large-scale procurement in 1966 of a modified AR-15—the M16—for deployment in the Vietnam conflict.

In 1978, DARPA integrated a number of technologies—including lasers, electro-optical sensors, microelectronics, data processors, and radars—important for precision guided munitions (PGMs) under its Assault Breaker program. Over a four-year period, Assault Breaker laid the technological foundation for several smart-weapon systems that were ultimately fielded with high success. Among these systems are the Joint Surveillance Target Attack Radar System (JSTARS), which integrated PGMs with advanced intelligence, surveillance, and reconnaissance (ISR) systems developed with DARPA support; the Global Hawk unmanned aerial vehicles; a U.S. Air Force air-to-ground missile with terminally guided submunitions; the long-range, quick-response, surface-to-surface Army Tactical Missile System (ATMS), which featured all-weather, day/night capability effective against mobile and other targets; and the Brilliant Anti-armor Tank (BAT) submunition, which used acoustic sensors on its wings to detect and target tanks.
Under a DARPA contract, the Rochester Institute of Technology (RIT) developed the Blast Gauge, a small device worn by warfighters to measure blast exposure and cue medics for initial response. This phase of the project took just 11 months with a total development cost of approximately $1 million. As field tests began, and design refinement and larger production quantities were required, RIT researchers formed BlackBox Biometrics, a small business to commercialize and manufacture the Blast Gauges.
DARPA and the U.S. Army’s Fort Belvoir Research, Development and Engineering Center ran a series of concept studies in the early 1970s to define requirements for an anti-tank weapon referred to as the Terminally Guided Anti-Armor Indirect Fire Weapon System. Under DARPA’s wing, that morphed into the Brilliant Anti-Tank Munition (BAT)), a terminally guided anti-armor munition originally intended to be carried aboard the TriService Standoff Attack Missile. Its design featured dual seekers to minimize spoofing and a novel acoustic sensor that could cue on the sound of running tank engines. A decade after the program began, more than 1,100 pre-production and low-production units had been built.

In addition to supporting advanced materials development since its early years, DARPA has at times been called upon to identify technologies for specific near-term applications. One of these tasks occurred for Operation Desert Storm (1991-1992) when ground forces experienced a critical need for more effective armor. The DARPA solution in this case, particularly for roof protection for the U.S. Marine Corps’ Light Armored Vehicles (LAVs) against artillery, was to ask the Lanxide Corporation to modify its cermet (ceramic/metallic) process and to work with a partner Foster Miller to produce appliqué armor.

From 1984 to 1986, DARPA supported the materials research and engineering that led to these cermet materials. With DARPA funding, 75 LAVs were up-armored with the tough composite materials. In the early 1990s, M-9 Armored Combat Earthermoves (ACE) also employed this lightweight armor. Variations of these cermet materials have been used for cockpit armor by the U.S. Air Force in C-130, C-141, and C-14 aircraft in Bosnia.

The Lanxide material has also been employed as high-power-density heat sinks for the F/A-18 and F-16 radars, turbine tip shrouds, commercial satellite heat sinks, very stiff parts for semiconductor lithography machines, and as vehicle brake components. All of the military and civil uses of Lanxide evolved directly from DARPA’s program. The military uses were under DARPA support, and then transitioned to U.S. Army and Air Force programs.