Defense Advanced Research Projects AgencyTagged Content List

Ground Systems

Manned and unmanned terrestrial systems, including vehicles, robotics and supporting technologies

Showing 6 results for Ground + Health RSS
Under a DARPA contract, the Rochester Institute of Technology (RIT) developed the Blast Gauge, a small device worn by warfighters to measure blast exposure and cue medics for initial response. This phase of the project took just 11 months with a total development cost of approximately $1 million. As field tests began, and design refinement and larger production quantities were required, RIT researchers formed BlackBox Biometrics, a small business to commercialize and manufacture the Blast Gauges.
Traumatic Brain Injury (TBI) is the signature wound of conflicts in Iraq and Afghanistan. Conservative estimates put the number of U.S. warfighters who have experienced TBI at more than 200,000. Battlefield medical personnel today rely on visual signs and the personal accounts of patients to alert them to the possibility of TBI. The DARPA Blast Gauge provides a quantitative means for measuring blast related exposure, thus providing a mechanism for medical personnel to better identify those at risk for TBI. The gauge collects quantitative data to provide medics with a screening tool and data for uncovering the mechanisms of TBI.
A Soldier carries a 61-pound load while walking in a prototype DARPA Warrior Web system during an independent evaluation by the U.S. Army. Warrior Web seeks to create a soft, lightweight under-suit that would help reduce injuries and fatigue common for Soldiers, who often carry 100-pound loads for extended periods over rough terrain. DARPA envisions Warrior Web augmenting the work of Soldiers’ own muscles to significantly boost endurance, carrying capacity and overall warfighter effectiveness–all while using no more than 100W of power.
| Ground | Health |
Of the many risks dismounted Soldiers face in the field, one of the most common is injury from carrying their gear—often topping 100 pounds—for extended periods over rough terrain. Heavy loads increase the likelihood of musculoskeletal injury and also exacerbate fatigue, which contributes to both acute and chronic injury and impedes Soldiers’ physical and cognitive abilities to perform mission-oriented tasks. To help address these challenges, DARPA seeks performers for the last phase of its Warrior Web program.
| Ground | Health |
Harvard University’s Wyss Institute for Biologically Inspired Engineering is continuing development of a lightweight, soft exosuit for DARPA’s Warrior Web program, which is aimed at creating technologies that mitigate musculoskeletal injuries among warfighters while improving performance. The Wyss team is seeking to integrate component technologies developed in separate Warrior Web efforts into a prototype suit that offers expanded capabilities. DARPA plans to test the final suit in appropriate mission profiles under realistic loads to evaluate performance.
| Ground | Health |