Defense Advanced Research Projects AgencyTagged Content List

Electronics and Microchips

Technologies based on the manipulation of electrons and, increasingly, photons

Showing 5 results for Electronics + Opportunities RSS
09/07/2017
DARPA published its Young Faculty Award (YFA) 2018 Research Announcement today, seeking proposals in 26 different topic areas—the largest number of YFA research areas ever solicited.
12/10/2018
Today’s critical Department of Defense (DOD) systems and platforms rely on advanced electronics to address national security objectives. To help tackle obstacles facing a half-century of electronics advancement, DARPA launched the Electronics Resurgence Initiative (ERI) – a five-year, upwards of $1.5 billion investment in the future of domestic electronic systems. In November, DARPA expanded ERI with the announcement of ERI Phase II, which seeks to further enmesh the technology needs and capabilities of the defense enterprise with the commercial and manufacturing realities of the electronics industry.
January 23, 2019,
DARPA Conference Center
The Information Innovation Office is holding a Proposers Day meeting to provide information to potential proposers on the objectives of the new Guaranteed Architecture for Physical Security (GAPS) program. GAPS will develop hardware and software architectures that can provide physically provable guarantees around high-risk transactions, or where data moves between systems of different security levels. DARPA wants to ensure that these transactions are isolated and that the systems they move across are enabled with the necessary data security assertions. The intended outputs of this program are hardware and software co-design tools that allow data separation requirements to be defined during design, and protections that can be physically enforced at system runtime.
November 1, 2018, 8:30 AM ET,
DARPA Conference Center
The Microsystems Technology Office is holding a Proposers Day to provide information to potential proposers on the objectives of the new program. PIPES will develop optical I/O for emerging data movement needs of commercial and military systems. PIPES seeks to emplace integrated optical transceiver capabilities into cutting-edge multi-chip modules (e.g., field-programmable gate arrays (FPGAs), graphical processing units (GPUs), central processing units (CPUs), and application-specific integrated circuits (ASICs)) for 2023-era microelectronics with performance well beyond currently available solutions. In parallel, PIPES aims to develop novel optical I/O approaches and advanced optical packaging and switching technologies to satisfy data movement demands of highly parallel systems in the 2028 timeframe. Additionally, the program will combine the advanced microelectronics capabilities of commercial industry, innovative photonics solutions from research communities, and DoD-specific application drivers from the defense industry into a framework for long-term technology availability by establishing and supporting a domestic technology ecosystem.
04/18/2019
DARPA believes that recent advances in biosensors, actuators, and artificial intelligence could be extended and integrated to dramatically improve tissue regeneration. To achieve this, the new Bioelectronics for Tissue Regeneration (BETR) program asks researchers to develop bioelectronics that closely track the progress of the wound and then stimulate healing processes in real time to optimize tissue repair and regeneration.