Defense Advanced Research Projects AgencyTagged Content List

Electronics and Microchips

Technologies based on the manipulation of electrons and, increasingly, photons

Showing 95 results for Electronics RSS
For years, DARPA and its Service partners pursued the technically daunting task of developing high-power-density, wide-band-gap semiconductor components in the recognition that, whatever the end-state task, U.S. forces would need electronics that could operate and engage at increasing range. The result was a series of fundamental advances involving gallium nitride-enabled arrays, which now provide significant benefits in a wide range of applications in the national security domain.
DARPA launched the Microwave and Analog Front End Technology (MAFET) program in 1995 as a follow-on to the Millimeter Wave Monolithic Integrated Circuits (MIMIC) program, which began in 1987. MAFET aimed to significantly reduce non-recurring costs for microwave and millimeter-wave sensor systems for military applications.
Early GPS receivers were bulky, heavy devices. In 1983, DARPA set out to miniaturize them, leading to a much broader adoption of GPS capability.
Two set of DARPA performers—one team with researchers from the University of Southern California and Columbia University and another with researchers from MIT and Carnegie Mellon University—achieved world-record power output levels using silicon-based technologies for millimeter-wave power amplifiers. RF power amplifiers are used in communications and sensor systems to boost power levels for more reliable transmission of signals over greater distances.
The sophisticated electronics used by warfighters in everything from radios, remote sensors and even phones can now be made at such a low cost that they are pervasive throughout the battlefield. These electronics have become necessary for operations, but it is almost impossible to track and recover every device. At the end of operations, these electronics are often found scattered across the battlefield and might be captured by the enemy and repurposed or studied to compromise DoD’s strategic technological advantage.