Defense Advanced Research Projects AgencyTagged Content List

Infectious Disease

Relating to ailments caused by pathogens

Showing 21 results for Disease + News RSS
Many chronic inflammatory diseases and mental health conditions affecting military Service members and veterans involve abnormal activity in the peripheral nervous system, which plays a key role in organ function. Monitoring and targeted regulation of peripheral nerve signals offer great promise to help patients restore and maintain their health without surgery or drugs. Current neuromodulation devices are typically used as a last resort, however, because they are relatively large (about the size of a deck of cards), require invasive surgical implantation and often produce side effects due to their lack of precision.
In every population that encounters an infectious organism, a few individuals prove to be resilient—unfazed by that pathogen because they are either resistant to it (their immune systems keep the pathogen from multiplying to dangerous levels) or tolerant (they don’t get as sick as they otherwise might despite carrying high pathogen loads). Conventional disease treatments such as antibiotics have almost exclusively sought to emulate natural resistance by keeping patients’ pathogen levels as low as possible.
The chikungunya virus (CHIKV) is quickly spreading through the Western Hemisphere; as of May 15, 2015, the Pan-American Health Organization (PAHO) had tallied close to 1.4 million suspected cases and more than 33,000 confirmed cases since the virus’ first appearance in the Americas in December 2013. Spread by mosquitoes, chikungunya is rarely fatal but can cause debilitating joint and muscle pain, fever, nausea, fatigue and rash, and poses a growing public health and national security risk. Governments and health organizations could take more effective proactive steps to limit the spread of CHIKV if they had accurate forecasts of where and when it would appear. But such predictions for CHIKV and other emerging infectious diseases remain beyond the reach of current modeling capabilities.
Zika. Ebola. Dengue. Influenza. Chikungunya. These are but a few among the growing cadre of viruses that today pose serious health threats to U.S. troops, as well as to civilian populations in the United States and around the world. Vaccines exist for but a few of these infectious diseases. And since these viruses have an uncanny ability to mutate and morph as they reproduce inside their hosts, those few vaccines that do exist are quickly outdated, providing little protection against the latest viral strains. That’s why flu vaccine manufacturers, for example, must produce new versions annually, at enormous expense and with variable year-to-year efficacy.
Imagine the workplace during flu season. Some people get sick and display clear symptoms—a warning sign to coworkers to avoid contact and for that individual to stay home. Others are infected, but never or only belatedly exhibit the tell-tale signs of sickness, meaning they can infect coworkers without knowing it. If healthcare professionals had the ability to test in advance whether a person is likely to spread a disease following infection, they could recommend specific measures to treat the person or limit exposure and perhaps keep an outbreak from growing into an epidemic or pandemic.