Defense Advanced Research Projects AgencyTagged Content List


The ability to update underlying capabilities in large and massively complex systems inexpensively and quickly is crucial to avoid outdated and inferior electronics. The increasing complexity of our major military systems precludes rapid change so it is essential that we move towards a new model that allows for quick adoption of new and modern electronics.

Showing 13 results for Decentralization + Integration RSS
Most people are familiar with the concept of RADAR. Radio frequency (RF) waves travel through the atmosphere, reflect off of a target, and return to the RADAR system to be processed. The amount of time it takes to return correlates to the object’s distance. In recent decades, this technology has been revolutionized by electronically scanned (phased) arrays (ESAs), which transmit the RF waves in a particular direction without mechanical movement. Each emitter varies its phase and amplitude to form a RADAR beam in a particular direction through constructive and destructive interference with other emitters.
The U.S. Military relies on the space-based Global Positioning System (GPS) to aid air, land and sea navigation. Like the GPS units in many automobiles today, a simple receiver and some processing power is all that is needed for accurate navigation. But, what if the GPS satellites suddenly became unavailable due to malfunction, enemy action or simple interference, such as driving into a tunnel? Unavailability of GPS would be inconvenient for drivers on the road, but could be disastrous for military missions. DARPA is working to protect against such a scenario, and an emerging solution is much smaller than the navigation instruments in today’s defense systems.
It is difficult to imagine the modern world without the Global Positioning System (GPS), which provides real-time positioning, navigation and timing (PNT) data for countless military and civilian uses. Thanks in part to early investments that DARPA made to miniaturize GPS technology, GPS today is ubiquitous. It’s in cars, boats, planes, trains, smartphones and wristwatches, and has enabled advances as wide-ranging as driverless cars, precision munitions, and automated supply chain management.
More than 500,000 pieces of manmade space debris—including spent rocket stages, defunct satellites, and fragments as small as flecks of paint—currently hurtle around the Earth at roughly 17,000 miles per hour. At those speeds, impacts involving even the smallest of those items can damage satellites and spawn chain reactions of collisions, increasing the amount of orbital flotsam and creating “minefields” in space that can remain unpassable for centuries.
With the official roll out of the Electronics Resurgence Initiative’s latest investments today, DARPA hopes to open new innovation pathways to address impending engineering and economics challenges that, if left unanswered, could challenge what has been a relentless half-century run of progress in microelectronics technology. To maintain healthy forward momentum, the ERI over the next four years will commit hundreds of millions of dollars to nurture research in advanced new materials, circuit design tools, and system architectures. In addition to a half-dozen or so existing DARPA programs, and the largest program in the U.S. that funds basic electronics research at universities,