Defense Advanced Research Projects AgencyTagged Content List

Decentralization

The ability to update underlying capabilities in large and massively complex systems inexpensively and quickly is crucial to avoid outdated and inferior electronics. The increasing complexity of our major military systems precludes rapid change so it is essential that we move towards a new model that allows for quick adoption of new and modern electronics.

Showing 8 results for Decentralization + Communications RSS
05/18/2015
DARPA’s Strategic Technology Office (STO) is focused on technologies that enable fighting as a network to increase military effectiveness, cost leverage, and adaptability. STO's areas of interest include: Battle Management, Command and Control; Communications and Networks; Intelligence, Surveillance, and Reconnaissance; Electronic Warfare; Positioning, Navigation, and Timing; and Foundational Strategic Technologies and Systems.
04/30/2013
Troops operating in forward locations without telecommunication infrastructure often rely on a mobile ad hoc network (MANET) to communicate and share data. The communication devices troops use on foot or in vehicles double as nodes on the mobile network. A constraint with current MANETs is they can only scale to around 50 nodes before network services become ineffective. For the past 20 years, researchers have unsuccessfully used Internet-based concepts in attempts to significantly scale MANETs.
08/21/2013
Squads of Soldiers or Marines on patrol in remote forward locations often don’t have the luxury of quickly sharing current intelligence information and imagery on their mobile devices, because they can’t access a central server. Troops frequently have to wait until they’re back at camp to download the latest updates. In the meantime, mission opportunities may erode because the information needed at the tactical edge isn’t immediately available.
Precise timing is essential across DoD systems, including communications, navigation, electronic warfare, intelligence systems reconnaissance, and system-of-systems platform coordination, as well as in national infrastructure applications in commerce and banking, telecommunications, and power distribution. Improved clock performance throughout the timing network, particularly at point-of-use, would enable advanced collaborative capabilities and provide greater resilience to disruptions of timing synchronization networks, notably by reducing reliance on satellite-based global navigation satellite system (GNSS) timing signals.
Commercial Test and Measurement equipment has advanced greatly with the emergence of sophisticated cellular and wireless local area network technology and can be used to intercept, analyze and exploit our military communications signals.