Defense Advanced Research Projects AgencyTagged Content List


The ability to update underlying capabilities in large and massively complex systems inexpensively and quickly is crucial to avoid outdated and inferior electronics. The increasing complexity of our major military systems precludes rapid change so it is essential that we move towards a new model that allows for quick adoption of new and modern electronics.

Showing 63 results for Decentralization RSS
As commercial technologies become more advanced and widely available, adversaries are rapidly developing capabilities that put our forces at risk. To counter these threats, the U.S. military is developing systems-of-systems concepts in which networks of manned and unmanned platforms, weapons, sensors, and electronic warfare systems interact over robust satellite and tactical communications links. These approaches offer flexible and powerful options to the warfighter, but the complexity introduced by the increase in the number of employment alternatives creates a battle management challenge.
Complex Defense systems, such as RADAR, communications, imaging and sensing systems rely on a wide variety of microsystems devices and materials. These diverse devices and materials typically require different substrates and different processing technologies, preventing the integration of these devices into single fabrication process flows. Thus, integration of these device technologies has historically occurred only at the chip-to-chip level, which introduces significant bandwidth and latency-related performance limitations on these systems, as well as increased size, weight, power, and packaging/assembly costs as compared to microsystems fully integrated on a single chip.
The general-purpose computer has remained the dominant computing architecture for the last 50 years, driven largely by the relentless pace of Moore’s Law. As this trajectory shows signs of slowing, however, it has become increasingly more challenging to achieve performance gains from generalized hardware, setting the stage for a resurgence in specialized architectures. Today’s specialized, application-specific integrated circuits (ASICs) — hardware customized for a specific application — offer limited flexibility and are costly to design, fabricate, and program.
Current military communication systems have limited ability to support mobile, distributed operations in remote geographic areas due to the small size of networks and relatively short range of military radios. Today, military mobile ad hoc networks (MANETs) are used to relay communications services beyond the range of a single radio.
Next-generation intelligent systems supporting Department of Defense (DoD) applications like artificial intelligence, autonomous vehicles, shared spectrum communication, electronic warfare, and radar require processing efficiency that is orders of magnitude beyond what is available through current commercial electronics. Reaching the performance levels required by these DoD applications however will require developing highly complex system-on-chip (SoC) platforms that leverage the most advanced integrated circuit technologies.