Defense Advanced Research Projects AgencyTagged Content List


The ability to update underlying capabilities in large and massively complex systems inexpensively and quickly is crucial to avoid outdated and inferior electronics. The increasing complexity of our major military systems precludes rapid change so it is essential that we move towards a new model that allows for quick adoption of new and modern electronics.

Showing 52 results for Decentralization RSS
The Chip-Scale Atomic Clock (CSAC) effort created ultra-miniaturized, low-power, atomic time and frequency reference units. The development of CSAC enabled ultra-miniaturized and ultra-low power atomic clocks for high-security Ultra High Frequency (UHF) communication and jam-resistant GPS receivers. The use of CSAC technology can greatly improve the mobility and robustness of any military system or platform with sophisticated UHF communication and/or navigation requirements.
The Microscale Rate Integrating Gyroscope (MRIG) effort seeks to create micromachined vibratory gyroscopes that can be instrumented to directly measure the angle of rotation, extending the dynamic range and eliminating the need to integrate angular rate information. If successful, MRIG will enable high performance, low cost gyroscopes which, when integrated in Inertial Measurement Units (IMU), will be small enough for adaptation in guided munitions’ platforms, hand-held devices, and add-in portable Guidance, Navigation, and Control (GN&C) units.
Micro Inertial Navigation Technology (MINT) aims to create navigation sensors that use secondary inertial variables, such as velocity and distance, to mitigate the error growth encountered with the inertial sensor alone. The combination of micro scale navigation aiding sensors will provide navigation accuracy beyond that which can be accomplished with a traditional inertial measurement unit (IMU) – equipped with only accelerometers and gyroscopes. If successful, the MINT effort will create micro- and nano-scale low-power navigation sensors that allow long term (hours to days) of GPS denied precision navigation.
More than 7,000 spacecraft have been launched from Earth, the vast majority of which are satellites that are no longer operational. These defunct objects, now free-orbiting debris, threaten the more than 1,200 satellites that are currently operated by commercial and government entities around the globe. The number of space debris that threaten important communications, weather monitoring, navigation services and imagery satellites is growing.
The Precise Robust Inertial Guidance for Munitions (PRIGM) program is developing inertial sensor technologies to enable positioning, navigation, and timing (PNT) in GPS-denied environments. PRIGM comprises two focus areas: development of a navigation-grade inertial measurement unit (NGIMU) based on micro-electromechanical systems (MEMS) platforms, and basic research of advanced inertial micro sensor (AIMS) technologies for future gun-hard, high-bandwidth, high-dynamic-range, GPS-free navigation.