Defense Advanced Research Projects AgencyTagged Content List

Decentralization

The ability to update underlying capabilities in large and massively complex systems inexpensively and quickly is crucial to avoid outdated and inferior electronics. The increasing complexity of our major military systems precludes rapid change so it is essential that we move towards a new model that allows for quick adoption of new and modern electronics.

Showing 63 results for Decentralization RSS
Today’s electromagnetic (EM) systems use antenna arrays to provide unique capabilities, such as multiple beam forming and electronic steering, which are important for a wide variety of applications such as communications, signal intelligence (SIGINT), radar, and electronic warfare.
Precise timing is essential across DoD systems, including communications, navigation, electronic warfare, intelligence systems reconnaissance, and system-of-systems platform coordination, as well as in national infrastructure applications in commerce and banking, telecommunications, and power distribution. Improved clock performance throughout the timing network, particularly at point-of-use, would enable advanced collaborative capabilities and provide greater resilience to disruptions of timing synchronization networks, notably by reducing reliance on satellite-based global navigation satellite system (GNSS) timing signals.
Commercial Test and Measurement equipment has advanced greatly with the emergence of sophisticated cellular and wireless local area network technology and can be used to intercept, analyze and exploit our military communications signals.
Information, or ‘content’, on the World Wide Web is replicated and distributed across the world to ensure high availability to the end-user. User expectations for rapid access to content have led to the creation of content distribution systems that enhance the user experience. Consequently, users may quickly access content used for everyday living, from restaurant menus and maps, to local and world news.
The Cross-Domain Maritime Surveillance and Targeting (CDMaST) program seeks to identify and implement architectures consisting of novel combinations of manned and unmanned systems to deny ocean environments to adversaries as a means of projecting power. By exploiting promising new developments in unmanned systems along with emerging long-range weapon systems, the program aims to develop an advanced, integrated undersea and above-sea warfighting capability able to execute long-range attacks against submarines and ships over large contested maritime areas.