Defense Advanced Research Projects AgencyTagged Content List

Decentralization

The ability to update underlying capabilities in large and massively complex systems inexpensively and quickly is crucial to avoid outdated and inferior electronics. The increasing complexity of our major military systems precludes rapid change so it is essential that we move towards a new model that allows for quick adoption of new and modern electronics.

Showing 52 results for Decentralization RSS
01/15/2013
Most people are familiar with the concept of RADAR. Radio frequency (RF) waves travel through the atmosphere, reflect off of a target, and return to the RADAR system to be processed. The amount of time it takes to return correlates to the object’s distance. In recent decades, this technology has been revolutionized by electronically scanned (phased) arrays (ESAs), which transmit the RF waves in a particular direction without mechanical movement. Each emitter varies its phase and amplitude to form a RADAR beam in a particular direction through constructive and destructive interference with other emitters.
02/26/2013
Phased radio frequency (RF) arrays use numerous small antennas to steer RF beams without mechanical movement (think radar without a spinning dish). These electronics are invaluable for critical DoD applications such as radar, communications and electronic warfare. Their lack of moving parts reduces maintenance requirements and their advanced electromagnetic capabilities, such as the ability to look in multiple directions at once, are extremely useful in the field. These benefits, though, come with a high price tag. Current phased arrays are extremely expensive and can take many years to engineer and build.
04/10/2013
The U.S. Military relies on the space-based Global Positioning System (GPS) to aid air, land and sea navigation. Like the GPS units in many automobiles today, a simple receiver and some processing power is all that is needed for accurate navigation. But, what if the GPS satellites suddenly became unavailable due to malfunction, enemy action or simple interference, such as driving into a tunnel? Unavailability of GPS would be inconvenient for drivers on the road, but could be disastrous for military missions. DARPA is working to protect against such a scenario, and an emerging solution is much smaller than the navigation instruments in today’s defense systems.
04/30/2013
Troops operating in forward locations without telecommunication infrastructure often rely on a mobile ad hoc network (MANET) to communicate and share data. The communication devices troops use on foot or in vehicles double as nodes on the mobile network. A constraint with current MANETs is they can only scale to around 50 nodes before network services become ineffective. For the past 20 years, researchers have unsuccessfully used Internet-based concepts in attempts to significantly scale MANETs.
08/21/2013
Squads of Soldiers or Marines on patrol in remote forward locations often don’t have the luxury of quickly sharing current intelligence information and imagery on their mobile devices, because they can’t access a central server. Troops frequently have to wait until they’re back at camp to download the latest updates. In the meantime, mission opportunities may erode because the information needed at the tactical edge isn’t immediately available.