Defense Advanced Research Projects AgencyTagged Content List

Data Analysis at Massive Scales

Extracting information and insights from massive datasets; "big data"; "data mining"

Showing 9 results for Data + Interface RSS
Advanced materials are increasingly embodying counterintuitive properties, such as extreme strength and super lightness, while additive manufacturing and other new technologies are vastly improving the ability to fashion these novel materials into shapes that would previously have been extremely costly or even impossible to create. Generating new designs that fully exploit these properties, however, has proven extremely challenging.
Throughout DARPA’s history, artificial intelligence (AI) has been an important area of groundbreaking research and development (R&D). In the 1960s, DARPA researchers completed some of the foundational work in the field, leading to the creation of expert systems, or the first wave of AI technologies. Since then, DARPA has funded developments in the second wave of AI – machine learning – which has significantly impacted defense and commercial capabilities in areas such as speech understanding, self-driving cars, and image recognition.
May 13, 2016,
Executive Conference Center
The Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) is sponsoring a Proposers Day to provide information to potential proposers on the objectives of an anticipated Broad Agency Announcement (BAA) for the TRAnsformative DESign (TRADES) program. The Proposers Day will be held on Friday, May 13, 2016 from 8:30 AM to 12:30 PM (EDT) at the Executive Conference Center (4075 Wilson Blvd. Suite 350 Arlington, VA 22203).
Dramatic success in machine learning has led to a torrent of Artificial Intelligence (AI) applications. Continued advances promise to produce autonomous systems that will perceive, learn, decide, and act on their own. However, the effectiveness of these systems is limited by the machine’s current inability to explain their decisions and actions to human users (Figure 1). The Department of Defense (DoD) is facing challenges that demand more intelligent, autonomous, and symbiotic systems. Explainable AI—especially explainable machine learning—will be essential if future warfighters are to understand, appropriately trust, and effectively manage an emerging generation of artificially intelligent machine partners.
Serial Interactions in Imperfect Information Games Applied to Complex Military Decision Making (SI3-CMD) builds on recent developments in artificial intelligence and game theory to enable more effective decisions in adversarial domains. SI3-CMD will explore several military decision making applications at strategic, tactical, and operational levels and develop AI/game theory techniques appropriate for their problem characteristics.