Defense Advanced Research Projects AgencyTagged Content List

Data Analysis at Massive Scales

Extracting information and insights from massive datasets; "big data"; "data mining"

Showing 8 results for Data + Interface RSS
Advanced materials are increasingly embodying counterintuitive properties, such as extreme strength and super lightness, while additive manufacturing and other new technologies are vastly improving the ability to fashion these novel materials into shapes that would previously have been extremely costly or even impossible to create. Generating new designs that fully exploit these properties, however, has proven extremely challenging.
May 13, 2016,
Executive Conference Center
The Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) is sponsoring a Proposers Day to provide information to potential proposers on the objectives of an anticipated Broad Agency Announcement (BAA) for the TRAnsformative DESign (TRADES) program. The Proposers Day will be held on Friday, May 13, 2016 from 8:30 AM to 12:30 PM (EDT) at the Executive Conference Center (4075 Wilson Blvd. Suite 350 Arlington, VA 22203).
Dramatic success in machine learning has led to a torrent of Artificial Intelligence (AI) applications. Continued advances promise to produce autonomous systems that will perceive, learn, decide, and act on their own. However, the effectiveness of these systems is limited by the machine’s current inability to explain their decisions and actions to human users (Figure 1). The Department of Defense (DoD) is facing challenges that demand more intelligent, autonomous, and symbiotic systems. Explainable AI—especially explainable machine learning—will be essential if future warfighters are to understand, appropriately trust, and effectively manage an emerging generation of artificially intelligent machine partners.
New manufacturing technologies such as additive manufacturing have vastly improved the ability to create shapes and material properties previously thought impossible. Generating new designs that fully exploit these properties, however, has proven extremely challenging. Conventional design technologies, representations, and algorithms are inherently constrained by outdated presumptions about material properties and manufacturing methods. As a result, today’s design technologies are simply not able to bring to fruition the enormous level of physical detail and complexity made possible with cutting-edge manufacturing capabilities and materials.
The advance of technology has evolved the roles of humans and machines in conflict from direct confrontations between humans to engagements mediated by machines. Originally, humans engaged in primitive forms of combat. With the advent of the industrial era, however, humans recognized that machines could greatly enhance their warfighting capabilities. Networks then enabled teleoperation, which eventually proved vulnerable to electronic attack and subject to constraint due to long signal propagation distances and times. The next stage in warfare will involve more capable autonomous systems, but before we can allow such machines to supplement human warfighters, they must achieve far greater levels of intelligence.