Defense Advanced Research Projects AgencyTagged Content List

Cyber

Relating to digital systems and information

Showing 39 results for Cyber + Programs RSS
In the current art, users with significant computing requirements have typically depended on access to large, highly shared data centers to which they backhaul their data (e.g., images, video, or network log files) for processing. However, in many operational scenarios, the cost and latency of this backhaul can be problematic, especially when network throughput is severely limited or when the user application requires a near real-time response. In such cases, users’ ability to leverage computing power that is available “locally” (in the sense of latency, available throughput, or similar measures that are relevant to the user or mission) could substantially improve application performance while reducing mission risk.
The United States military is heavily dependent on networked communication to fulfill its missions. The wide-area network (WAN) infrastructure that supports this communication is vulnerable to a wide range of failures and cyber attacks that can severely impair connectivity and mission effectiveness at critical junctures. Examples include inadvertent or malicious misconfiguration of network devices, hardware and software failures, extended delays in Internet Protocol (IP) route convergence, denial of service (DoS) flooding attacks, and a variety of control-plane and data-plane attacks resulting from malicious code embedded within network devices.
Malicious actors in cyberspace currently operate with little fear of being caught due to the fact that it is extremely difficult, in some cases perhaps even impossible, to reliably and confidently attribute actions in cyberspace to individuals. The reason cyber attribution is difficult stems at least in part from a lack of end-to-end accountability in the current Internet infrastructure.
The threat of distributed denial of service (DDoS) attacks has been well-recognized in the data networking world for two decades. Such attacks are orchestrated by sets of networked hosts that collectively act to disrupt or deny access to information, communications or computing capabilities, generally by exhausting critical resources such as bandwidth, processor capacity or memory of targeted resources.
Malicious actors are currently able to compromise and use with impunity large numbers of devices owned and operated by third parties. Such collections of compromised and conscripted devices, commonly referred to as botnets, are used for criminal, espionage, and computer network attack purposes (often a combination of all three). Recent examples of botnets and similar malicious code include Mirai, Hidden Cobra, WannaCry, and Petya/NotPetya