Defense Advanced Research Projects AgencyTagged Content List

Inverting Cost Equation

Imposing higher costs on adversaries

Showing 16 results for Cost + Programs RSS
No matter how capable, even the most advanced vessel can only be in one place at a time. U.S. Navy assets must cover vast regions of interest around the globe even as force reductions and fiscal constraints continue to shrink fleet sizes. To maintain advantage over adversaries, U.S. Naval forces need to project key capabilities in multiple locations at once, without the time and expense of building new vessels to deliver those capabilities.
Next-generation intelligent systems supporting Department of Defense (DoD) applications like artificial intelligence, autonomous vehicles, shared spectrum communication, electronic warfare, and radar require processing efficiency that is orders of magnitude beyond what is available through current commercial electronics. Reaching the performance levels required by these DoD applications however will require developing highly complex system-on-chip (SoC) platforms that leverage the most advanced integrated circuit technologies.
Due to engineering limitations and cost constraints, the dynamics of the electronic industry are continually changing. Commercial companies increasingly recognize the need to differentiate their products through research in areas other than device scaling, such as new circuit architectures and computing algorithms.
The goal of the DARPA Launch Challenge is to demonstrate responsive and flexible space launch capabilities from the burgeoning industry of small launch providers. For nearly 60 years, the nation’s space architecture has been built around exquisite systems that are launched by large, expensive boosters. The development cycle with the systems is tedious, with a process driven by a desire to reduce risk, rather than deliver timely capabilities.
The traditional process of designing, developing, building and deploying space systems is long, expensive and complex. These difficulties apply especially to the increasing number of expensive, mission-critical satellites launched every year into geosynchronous Earth orbit (GEO), approximately 22,000 miles above the Earth. Unlike objects in low Earth orbit (LEO), such as the Hubble Space Telescope, satellites in GEO are essentially unreachable with current technology.