Defense Advanced Research Projects AgencyTagged Content List

Inverting Cost Equation

Imposing higher costs on adversaries

Showing 40 results for Cost RSS

In the late 1970's, DARPA initiated a program with Lockheed Space Systems Division to develop the technology of welding aluminum-lithium alloys, which would combine high stiffness with low density and therefore lower weight. At the time, no one understood how to prepare these materials for welding and how to control impurities in the metals and welding process. Such control would be critical for producing materials repeatedly with predictable behavior and performance.

Within 18 months, metallurgists at Lockheed had developed the welding techniques for the 80/90 Al/Li alloy and applied it to the construction of space hardware. One of the most impressive structures made from this material was the Titan missile payload adapter, which was 14 feet in diameter and 17 feet high and fabricated from 3" thick metal plate. By using this alloy, a 10% weight saving was achieved compared to the prior incarnation of that rocket components. The weight savings translated into millions of dollars at cost savings when it came to delivering hardware to obit. This material system made it into classified DoD applications as well. Lockheed scaled the process up to 400,000 lb/year of Al-Li alloys for the next four years.

Launched on July 13, 1994, the 198-kg DARPASAT demonstrated the possibility of placing in orbit a lightweight, low-cost payload for enhancing operational defense and warfighting capabilities. The primary performer, Ball Aerospace, oversaw the design, fabrication, integration, and testing of the spacecraft bus, which carried two government-supplied payloads. With frugal management of battery use and thermal loads, DARPASAT surpassed its mission goal of a three-year lifetime by lasting for eight years.

The goal of the Global Low Orbiting Message Relay (GLOMR) satellite (aka CHEAPSAT) program was to demonstrate the feasibility of building a two-way, digital data communication satellite capable of performing important military missions for less than a million dollars in under a year. The broader objective was to demonstrate low-cost satellite construction technology that could pave the way for future satellites performing diverse missions.

Under DARPA sponsorship, Defense Systems, Inc. (DSI) designed and developed GLOMR. The spacecraft was placed into orbit from a getaway special canister (or GASCAN) aboard the Space Shuttle Challenger (Mission 61-A, Spacelab D-1) on October 30, 1985, and operated successfully on orbit for over 14 months, before it fell back into the Earth’s atmosphere.

A series of tests, including the use of a portable access terminal at DARPA, were conducted between Washington, D.C., and Santa Barbara, California, demonstrating two-way, cross-country communications via GLOMR. DARPA assisted in transitioning the capability of, and lessons learned from, the GLOMR program to the Defense Department (DoD) and other government agencies.

The GLOMR program demonstrated the feasibility of low-cost satellites. This spacecraft served as a model for many DoD and non-DoD uses, including communications, tracking of beacons, remote- sensor readout, and classified applications.

DARPA initiated a Small Standard Launch Vehicle (SSLV) program that led to the Taurus, a launch vehicle designed to supply the Department of Defense with quick-response, low-cost launch of tactical satellites from ground facilities. The initial DARPA model was first test-launched in 1989 and first used operationally in 1994. The prime contractor subsequently offered the vehicle in four versions.
DARPA Launch Challenge