Defense Advanced Research Projects AgencyTagged Content List

Harnessing Complexity

Systems comprising multiple and diverse interactions

Showing 38 results for Complexity + Programs RSS
The goal of the EXTREME Program is to develop new optical components, devices, systems, architectures and design tools using Engineered Optical Materials (EnMats) to enable new functionality and/or vastly improve size, weight, and power characteristics of traditional optical systems. EnMats are broadly defined to include, but are not limited to, metamaterials (both metallic and dielectric), scattering surfaces and volumes, holographic structures, and diffractive elements.
The science of network analysis is in its infancy. Currently, the structure of real-world networks is described only in terms of coarse and basic details such as diameter, degree distribution, etc. In addition, as networks become large, many problems are intractable as the classical algorithms for these problems run in exponential time with respect to the size of the graph. A large number of important problems (e.g., structural and functional brain dynamics or gene-protein and disease networks) can be formulated as graph problems. A comprehensive mathematical understanding of large networks is needed in order to effectively apply and scale graph-based network analysis techniques for use in DoD-relevant scenarios.
The social sciences can play important roles in assisting military planners and decision-makers who are trying to understand complex human social behaviors and systems, potentially facilitating a wide range of missions including humanitarian, stability, and counter-insurgency operations. Current social science approaches to studying behavior rely on a variety of modeling methods—both qualitative and quantitative—which seek to make inferences about the causes of social phenomena on the basis of observations in the real-world. Yet little is known about how accurate these methods and models really are, let alone whether the connections they observe and predict are truly matters of cause and effect or mere correlations.
What is opaque to outsiders is often obvious – even if implicit – to locals. Habitus aims to capture and make local knowledge available to military operators, providing them with an insider view to support decision making.
Next-generation intelligent systems supporting Department of Defense (DoD) applications like artificial intelligence, autonomous vehicles, shared spectrum communication, electronic warfare, and radar require processing efficiency that is orders of magnitude beyond what is available through current commercial electronics. Reaching the performance levels required by these DoD applications however will require developing highly complex system-on-chip (SoC) platforms that leverage the most advanced integrated circuit technologies.