Defense Advanced Research Projects AgencyTagged Content List

Harnessing Complexity

Systems comprising multiple and diverse interactions

Showing 38 results for Complexity + Programs RSS
The ultimate goal of the DARPA Accelerated Computation for Efficient Scientific Simulation (ACCESS) is to demonstrate new, specialized benchtop technology that can solve large problems in complex physical systems on the hour timescale, compared to existing methods that require full cluster-scale supercomputing resources and take weeks to months. The core principle of the program is to leverage advances in optics, MEMS, additive manufacturing, and other emerging technologies to develop new non-traditional hybrid analog and digital computational means.
The Agile Teams (A-Teams) program aims to discover, test, and demonstrate generalizable mathematical abstractions for the design of agile human-machine teams and to provide predictive insight into team performance.
An emergent type of geopolitical warfare in recent years has been coined "gray zone competition," or simply "competition," because it sits in a nebulous area between peace and conventional conflict. It’s not openly declared or defined, it’s slower and is prosecuted more subtly using social, psychological, religious, information, cyber and other means to achieve physical or cognitive objectives with or without violence. The lack of clarity of intent in competition activity makes it challenging to detect, characterize, and counter an enemy fighting this way.
System-of-Systems (SoS) architectures are increasingly central in managing defense, national security and urban infrastructure applications. However, it is difficult to model and currently impossible to systematically design such complex systems using existing tools, which has led to inferior performance, unexpected problems and weak resilience.
Accurate multi-physics simulation codes are essential for understanding the behavior of complex DoD systems, but they are generally not available from the commercial sector and have to be custom built. Current approaches to building simulation codes scale poorly with the number of interacting physics involved and often introduce inaccuracies that are difficult to trace and quantify.