Defense Advanced Research Projects AgencyTagged Content List

Harnessing Complexity

Systems comprising multiple and diverse interactions

Showing 4 results for Complexity + Microstructures RSS
For millennia, materials have mattered—so much so that entire eras have been named for them. From the Stone Age to the Bronze Age to the Iron Age and beyond, breakthroughs in materials have defined what was technologically possible and fueled revolutions in fields as diverse as electronics, construction and medicine. Today, DARPA is pursuing the next big advances in this fundamentally important domain.
DARPA published its Young Faculty Award (YFA) 2018 Research Announcement today, seeking proposals in 26 different topic areas—the largest number of YFA research areas ever solicited.
As a global force, the U.S. military is called upon to conduct missions that subject its platforms to extreme operational environments and structural loads. The endurance and performance of future Department of Defense platforms may call for the availability of materials with structural properties that significantly surpass current technology.
Uncertainties in materials and component manufacturing processes are a primary cause of cost escalation and delay during the development, testing and early production of defense systems. In addition, fielded military platforms may have unanticipated performance problems, despite large investment and extensive testing of their key components and subassemblies. These uncertainties and performance problems are often the result of the random variations and non-uniform scaling of manufacturing processes. These challenges, in turn, lead to counterproductive resistance to adoption of new, innovative manufacturing technologies that could offer better results.