Defense Advanced Research Projects AgencyTagged Content List

Harnessing Complexity

Systems comprising multiple and diverse interactions

Showing 104 results for Complexity RSS
With the official roll out of the Electronics Resurgence Initiative’s latest investments today, DARPA hopes to open new innovation pathways to address impending engineering and economics challenges that, if left unanswered, could challenge what has been a relentless half-century run of progress in microelectronics technology. To maintain healthy forward momentum, the ERI over the next four years will commit hundreds of millions of dollars to nurture research in advanced new materials, circuit design tools, and system architectures. In addition to a half-dozen or so existing DARPA programs, and the largest program in the U.S. that funds basic electronics research at universities, 
The internet of things connects an ever-growing number of smart devices for up-to-the-minute monitoring and tracking of many common events. Head out to most parts of the open ocean, however, and no such capability exists for real-time monitoring of maritime activity.
The microelectronics community is facing an array of long foreseen obstacles to Moore’s Law, the transistor scaling that has allowed for 50 years of rapid progress in electronics. Current economic, geopolitical, and physics-based complications make the future of the electronics industry uniquely interesting at this moment. To jump-start innovation in the field, DARPA announced in June 2017 that it would coalesce a broad series of programs into the Electronics Resurgence Initiative (ERI).
Today, Commercial off-the-shelf (COTS), Government off-the-shelf (GOTS), and Free and open-source (FOSS) software support nearly all aspects of DoD, military, and commercial operations. Securing this diverse technology base requires highly skilled hackers who reason about the functionality of software and identify novel vulnerabilities, using a suite of tools and techniques that require extensive training. While effective, the process is largely manual and requires hundreds, if not thousands, of hours of effort for each vulnerability discovered.
Chemical innovation plays a key role in developing cutting-edge technologies for the military. Research chemists design and synthesize new molecules that could enable a slew of next-generation military products, such as novel propellants for spacecraft engines; new pharmaceuticals and medicines for troops in the field; lighter and longer-lasting batteries and fuel cells; advanced adhesives, coatings and paints; and less expensive explosives that are safer to handle. The problem, however, is that existing molecule design and production methods rely primarily on experts’ intuition in a laborious, trial-and-error research process.