Defense Advanced Research Projects AgencyTagged Content List

Communications and Networks

All manner of sending, receiving, connecting and protecting information

Showing 7 results for Communications + Interface RSS
01/01/1962
A groundbreaking computer framework known as oN-Line System (NLS) got off the ground thanks to funding from DARPA and the U.S. Air Force. Conceived by Douglas Engelbart and developed by him and colleagues at the Stanford Research Institute (SRI), the NLS system was the first to feature hypertext links, a mouse, raster-scan video monitors, information organized by relevance, screen windowing, presentation programs and other modern computing concepts. In what became known as "The Mother of All Demos," because it demonstrated the revolutionary features of NLS as well as never-before-seen video presentation technologies, Engelbart unveiled NLS in San Francisco on December 9, 1968, to a large audience at the Fall Joint Computer Conference. Engelbart's terminal was linked to a large-format video projection system loaned by the NASA Ames Research Center and via telephone lines to a SDS 940 computer (designed specifically for time-sharing among multiple users) 30 miles away in Menlo Park, California, at the Augmentation Research Center, which Engelbart founded at SRI. On a 22-foot-high screen with video insets, the audience could see Engelbart manipulate the mouse and watch as members of his team in Menlo Park joined in the presentation. With the arrival of the ARPA Network at SRI in 1969, the time-sharing technology that seemed practical with a small number of users became impractical over a distributed network, but NLS opened pathways toward today’s astounding range of information technologies.
01/01/1968

Conceived by Douglas Engelbart and developed by him and colleagues at the Stanford Research Institute (SRI), the groundbreaking computer framework known as oN-Line System (NLS), jointly funded by ARPA and the Air Force, evolved throughout the decade. In what became known as "The Mother of All Demos"—because it demonstrated the revolutionary features of NLS as well as never-before-seen video presentation technologies—Engelbart unveiled NLS in San Francisco on December 9, 1968, to a large audience at the Fall Joint Computer Conference. Engelbart's terminal was linked to a large-format video projection system loaned by the NASA Ames Research Center and via telephone lines to a SDS 940 computer (designed specifically for time-sharing among multiple users) 30 miles away in Menlo Park, California, at the Augmentation Research Center, which Engelbart founded at SRI. On a 22-foot-high screen with video insets, the audience could see Engelbart manipulate the mouse and watch as members of his team in Menlo Park joined in the presentation.

With the arrival of the ARPA Network at SRI in 1969, the time-sharing technology that seemed practical with a small number of users became impractical over a distributed network. NLS, however, opened pathways toward today’s astounding range of information technologies.

03/16/2018
Over the past two decades, the international biomedical research community has demonstrated increasingly sophisticated ways to allow a person's brain to communicate with a device, allowing breakthroughs aimed at improving quality of life, such as access to computers and the internet, and more recently control of a prosthetic limb. DARPA has been at the forefront of this research.
05/20/2019
DARPA has awarded funding to six organizations to support the Next-Generation Nonsurgical Neurotechnology (N3) program, first announced in March 2018. Battelle Memorial Institute, Carnegie Mellon University, Johns Hopkins University Applied Physics Laboratory, Palo Alto Research Center (PARC), Rice University, and Teledyne Scientific are leading multidisciplinary teams to develop high-resolution, bidirectional brain-machine interfaces for use by able-bodied service members. These wearable interfaces could ultimately enable diverse national security applications such as control of active cyber defense systems and swarms of unmanned aerial vehicles, or teaming with computer systems to multitask during complex missions.
April 3, 2018,
DARPA Conference Center
DARPA’s Biological Technologies Office is hosting a Proposers Day and webinar to provide information to potential applicants on the structure and objectives of the Next-Generation Nonsurgical Neurotechnology (N3) program. N3 aims to develop a high-resolution, portable neural interface system that is either completely noninvasive or only minutely invasive to enable practical applications of neurotechnology for able-bodied individuals. The envisioned system would be capable of reading from and writing to multiple points in the brain at once. DARPA intends to wrap up the program with a demonstration of a bidirectional system used in a defense-relevant task that could include human-machine interactions with unmanned aerial vehicles, active cyber defense systems, or other properly instrumented Department of Defense systems.