Defense Advanced Research Projects AgencyTagged Content List

Communications and Networks

All manner of sending, receiving, connecting and protecting information

Showing 25 results for Communications + Tech-Foundations RSS
01/01/1968

Conceived by Douglas Engelbart and developed by him and colleagues at the Stanford Research Institute (SRI), the groundbreaking computer framework known as oN-Line System (NLS), jointly funded by ARPA and the Air Force, evolved throughout the decade. In what became known as "The Mother of All Demos"—because it demonstrated the revolutionary features of NLS as well as never-before-seen video presentation technologies—Engelbart unveiled NLS in San Francisco on December 9, 1968, to a large audience at the Fall Joint Computer Conference. Engelbart's terminal was linked to a large-format video projection system loaned by the NASA Ames Research Center and via telephone lines to a SDS 940 computer (designed specifically for time-sharing among multiple users) 30 miles away in Menlo Park, California, at the Augmentation Research Center, which Engelbart founded at SRI. On a 22-foot-high screen with video insets, the audience could see Engelbart manipulate the mouse and watch as members of his team in Menlo Park joined in the presentation.

With the arrival of the ARPA Network at SRI in 1969, the time-sharing technology that seemed practical with a small number of users became impractical over a distributed network. NLS, however, opened pathways toward today’s astounding range of information technologies.

07/12/2016
Normal radios operate in kilohertz (kHz) and megahertz (MHz) frequencies, bandwidths corresponding to electromagnetic oscillations in the thousands and millions of cycles per second ranges, respectively. Upping the ante, cell phones and radar systems operate in the billions of cycles per second range—that is, gigahertz (GHz) frequencies. But no one has managed to push radiofrequency technology into the trillions of cycles per second, or Terahertz (THz), range. With the Terahertz (THz) Electronics Program, however, DARPA has begun to make it possible.
07/19/2016
In March, DARPA officials first publicly floated plans for the Spectrum Collaboration Challenge, an initiative designed to ensure that the exponentially growing number of military and civilian wireless devices will have full access to the increasingly crowded electromagnetic spectrum. Today, with the Agency release of detailed postings about the competition’s architecture, rules, and two participation options for seeking one of the up to 30 available slots, SC2 is officially on.
12/16/2016
Here’s something easy to forget when you are chatting on your cell phone or flipping channels on your smart TV: although wireless communication seems nothing short of magic, it is a brilliant, reality-anchored application of physics and engineering in which radio signals travel from a transmitter to a receiver in the form of electric and magnetic fields woven into fast-as-light electromagnetic waves.
01/30/2017
Unveiled in March 2016, DARPA’s Spectrum Collaboration Challenge has reached an early milestone by choosing 30 contenders for the first of the three-phase competition, slated to culminate at the end of 2019 with a live match of finalists who have survived the two preliminary contests. In addition to 22 teams from academia and small and large companies, eight individuals have made it into the competition.