Defense Advanced Research Projects AgencyTagged Content List

Area Access

Relating to militarily contested or denied environments

Showing 9 results for Access + Programs RSS
Difficult terrain and threats such as ambushes and Improvised Explosive Devices (IEDs) can make ground-based transportation to and from the front line a dangerous challenge. Helicopters can easily bypass those problems but present logistical challenges of their own, and can subject flight crew to different types of threats. They are also expensive to operate, and the supply of available helicopters cannot always meet the demand for their services, which cover diverse operational needs including resupply, fire-team insertion and extraction, and casualty evacuation.
As commercial technologies become more advanced and widely available, adversaries are rapidly developing capabilities that put our forces at risk. To counter these threats, the U.S. military is developing systems-of-systems concepts in which networks of manned and unmanned platforms, weapons, sensors, and electronic warfare systems interact over robust satellite and tactical communications links. These approaches offer flexible and powerful options to the warfighter, but the complexity introduced by the increase in the number of employment alternatives creates a battle management challenge.
For the past 100 years of mechanized warfare, protection for ground-based armored fighting vehicles and their occupants has boiled down almost exclusively to a simple equation: More armor equals more protection. Weapons’ ability to penetrate armor, however, has advanced faster than armor’s ability to withstand penetration. As a result, achieving even incremental improvements in crew survivability has required significant increases in vehicle mass and cost.
Today’s dismounted warfighter can be saddled with more than 100 pounds of gear, resulting in physical strain, fatigue and degraded performance. Reducing the load on dismounted warfighters has become a major point of emphasis for defense research and development, because the increasing weight of individual equipment has a negative impact on warfighter readiness. The Army has identified physical overburden as one of its top five science and technology challenges. To help alleviate physical weight on troops, DARPA is developing a four-legged robot, the Legged Squad Support System (LS3), to integrate with a squad of Marines or Soldiers.
The Seeker Cost Transformation (SECTR) program seeks to develop novel weapon terminal sensing and guidance technologies and systems for air-launched, air-delivered weapons. SECTR technologies would enable weapons to acquire fixed and moving targets with only minimal external support; achieve high navigation accuracy in a GPS-denied environment; and be low size, weight, and cost.