Defense Advanced Research Projects AgencyTagged Content List

Area Access Anti access area denial

Relating to militarily contested or denied environments

Showing 11 results for A2/AD + Air RSS
04/04/2017
DARPA has completed flight-testing of a sub-scale version of a novel aircraft design as part of its vertical takeoff and landing (VTOL) X-Plane program, and is proceeding with work to develop a full-scale version of the groundbreaking plane. Developed and fabricated by Aurora Flight Sciences, the revolutionary aircraft includes 24 electric ducted fans—18 distributed within the main wings and six in the canard surfaces, with the wings and canards tilting upwards for vertical flight and rotating to a horizontal position for wing-borne flight.
04/07/2020
The airspace above future battlefields is expected to be increasingly congested with large numbers of unmanned aerial systems, manned aircraft, munitions and missiles filling the skies. To de-conflict airspace activities of friendly forces and rapidly counter an enemy’s actions on the battlefield requires new technologies to effectively integrate effects from all domains.
April 21, 2020,
Webinar
DARPA will host a Proposers Day via webinar in support of BAA HR001120S0039, Air Space Total Awareness for Rapid Tactical Execution (ASTARTE), Air Space Total Awareness for Rapid Tactical Execution (ASTARTE), on April 21, 2020, from 1:00 PM to 3:00 PM, Eastern Time (ET).
Difficult terrain and threats such as ambushes and Improvised Explosive Devices (IEDs) can make ground-based transportation to and from the front line a dangerous challenge. Helicopters can easily bypass those problems but present logistical challenges of their own, and can subject flight crew to different types of threats. They are also expensive to operate, and the supply of available helicopters cannot always meet the demand for their services, which cover diverse operational needs including resupply, fire-team insertion and extraction, and casualty evacuation.
In a target-dense environment, the adversary has the advantage of using sophisticated decoys and background traffic to degrade the effectiveness of existing automatic target recognition (ATR) solutions. Airborne strike operations against relocatable targets require that pilots fly close enough to obtain confirmatory visual identification before weapon release, putting the manned platform at extreme risk. Radar provides a means for imaging ground targets at safer and far greater standoff distances; but the false-alarm rate of both human and machine-based radar image recognition is unacceptably high. Existing ATR algorithms also require impractically large computing resources for airborne applications.