Defense Advanced Research Projects AgencyTagged Content List

Area Access

Relating to militarily contested or denied environments

Showing 37 results for Access RSS
Future U.S. land forces are increasingly likely to face an adversary force that is overwhelmingly superior in size and armament with formidable anti-access/area denial (A2/AD) capabilities. SESU seeks to deliver system-of-systems (SoS) capabilities that could enable a small unit (~200-300 soldiers, corresponding materiel footprint, and limited rear-echelon support) to destroy, disrupt, degrade, and/or delay the adversary's A2/AD and maneuver capabilities in order to enable joint and coalition multi-domain operations at appropriate times and locations.
During natural or manmade disasters, the U.S. armed forces, with rapidly deployable sealift, airlift, logistics, and medical care capabilities, may be called to supplement lead agencies or organizations providing humanitarian assistance and disaster relief support.
In a target-dense environment, the adversary has the advantage of using sophisticated decoys and background traffic to degrade the effectiveness of existing automatic target recognition (ATR) solutions. Airborne strike operations against relocatable targets require that pilots fly close enough to obtain confirmatory visual identification before weapon release, putting the manned platform at extreme risk. Radar provides a means for imaging ground targets at safer and far greater standoff distances; but the false-alarm rate of both human and machine-based radar image recognition is unacceptably high. Existing ATR algorithms also require impractically large computing resources for airborne applications.  
Today, cost and complexity limit the Navy to fewer weapons systems and platforms, causing strain on resources that must operate over vast maritime areas. Unmanned systems and sensors are commonly envisioned to fill coverage gaps and take action at a distance. However, power and logistics to deliver these systems over vast ocean areas limit their utility. The Upward Falling Payload (UFP) program intends to overcome these barriers.
For the past 60 years, helicopters have provided essential vertical takeoff and landing (VTOL) capabilities–omnidirectional maneuverability, hovering, landing on almost any flat surface–for countless military operations. Even as VTOL aircraft technology continues to advance, however, one key goal still remains elusive: improving top speed beyond 150 kt-170 kt. Faster VTOL aircraft could shorten mission times and increase the potential for successful operations, while reducing vulnerability to enemy attack. Unfortunately, new VTOL designs so far have been unable to increase top speed without unacceptable compromises in range, efficiency, useful payload or simplicity of design.