Rethinking Microsystem Manufacturing

Mr. Michael Sangillo, Program Manager, DARPA/MTO

July 24, 2025

<u>Vision</u> Create a portfolio of manufacturing programs that will revolutionize multiscale manufacturing

Design it

 Revolutionize how we invent multiscale systems

Build it

Revolutionize how we manufacture multiscale systems

Test it

 Revolutionize how we analyze and test multiscale systems

Applications

 Create multiscale systems with revolutionary functionality

Design It – Multiscale Manufacturing of Complete Systems

Start with a multilength scale hierarchical design

Simplify design pattern to achieve product functionality that is manufacturable with available tools

Fully automated manufacturing

Material and tool substitution

Revolutionize the economics of onshore manufacturing

Build It – Additive Manufacturing of MicrosystEms (AMME)

Microsystem manufacturing at the voxel level

Enabling novel technologies for future missions

AMME enables a new class of microsystem manufacturing

Test It – In-Situ Testing at the Voxel Level

[1] DARPA

What if we could test material placement, quality, and functional performance at the voxel level?

- Future manufacturing systems will synthesize unique microsystem geometries at the voxel level resulting in a massive number of unique QA test methods
- Ensure physical output matches the digital design at the voxel level
- Forward predict component QA functionality
- If the remaining digital design fails, update the design to compensate and guarantee functional performance

[1]

Guarantee performance of every unique microsystem at the voxel level

Resilient Cybernetic Systems for Extreme Environments

Enhanced Actuators

Strength, Dexterity, Durability

 Developing robust physical functionality for manipulation and interaction with the environment

Multimodal Sensing

Wisdom, Haptics, Vision

 Fusing disparate sensor data hierarchically to create a comprehensive understanding of the environment

Von Neumann Transformers

Intelligence, Recall, Goal Setting

 Developing advanced memory architectures for contextual awareness and decision-making

Create truly robust, adaptable cybernetic solutions in ANY environment

www.darpa.mil