Integrating Biology and Microsystems

Dr. John Hoffman, Program Manager, DARPA/MTO

July 24, 2025

Sequence Defined Polymers (SDPs) Open a Wide Application Space

Applications

Novel, high-impact products that can't be manufactured any other way

RPA) Macromolecular Machines That Synthesize Sequence-Defined Polymers

Planarity Limits the Device Architectures We Can Imagine

Channel fabrication

Chip Integration

Limitations

- Heat
- Assembly complexity
- Packing Density
- Bandwidth

Biopolymer Structures Coordinate Functional Materials in 3D

Nanometer scale templated growth

Source: https://www.biorxiv.org/content/10.1101/2024.06.24.600095v1

https://www.science.org/doi/10.1 126/science 1258361

3D microsystems

Source: https://www.science.org/doi/10.1126/science.1258361

SWCNT: Single Walled Carbon Nanotube

NP: Nanoparticle HBM: High Bandwidth Memory

QD: Quantum Dot I/O: Input/output

Impact: Novel device architectures enabled by bio-inspired 3D fabrication across length scales

www.darpa.mil