

Explainable Artificial Intelligence (XAI)

David Gunning DARPA/I2O

Proposers Day

11 AUG 2016

A. Introduction

B. Program Scope

- 1. Explainable Models
- 2. Explanation Interface
- 3. Psychology of Explanation
- 4. Emphasis and Scope of XAI Research

C. Challenge Problems and Evaluation

- 1. Overview
- 2. Data Analysis
- 3. Autonomy
- 4. Evaluation
- D. Technical Areas
 - 1. Explainable Learners
 - 2. Psychological Model of Explanation
- E. Schedule and Milestones
- F. Deliverables

• Fill out a question card

QSA SESSION AUGUST II. 2016	
	EXPLAINABLE ARTIFICIAL INTELLIGENCE
Name:	Organization:

• Send an email to: XAI@darpa.mil

A. Introduction - The Need for Explainable AI

- We are entering a new age of AI applications
- Machine learning is the core technology
- Machine learning models are opaque, non-intuitive, and difficult for people to understand

Sensemaking

Operations

User

- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?

- The current generation of AI systems offer tremendous benefits, but their effectiveness will be limited by the machine's inability to explain its decisions and actions to users.
- Explainable AI will be essential if users are to understand, appropriately trust, and effectively manage this incoming generation of artificially intelligent partners.

B. Program Scope – XAI Concept

- The target of XAI is an end user who:
 - \circ $\,$ depends on decisions, recommendations, or actions of the system
 - needs to understand the rationale for the system's decisions to understand, appropriately trust, and effectively manage the system
- The XAI concept is to:
 - provide an explanation of individual decisions
 - o enable understanding of overall strengths & weaknesses
 - o convey an understanding of how the system will behave in the future
 - convey how to correct the system's mistakes (perhaps)

B. Program Scope – XAI Development Challenges

B. Program Scope – XAI Development Challenges

TA 1: Explainable Learners

TA 2: Psychological Models

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

DARPA B.1 Explainable Models

Create a suite of machine learning techniques that produce more explainable models, while maintaining a high level of learning performance

New

Approach

B.1 Explainable Models

B.1 Explainable Models

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

B.1 Explainable Models

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

- State of the Art Human Computer Interaction (HCI)
 - \circ UX design
 - Visualization
 - $\circ~$ Language understanding & generation
- New Principles and Strategies
 - Explanation principles
 - Explanation strategies
 - Explanation dialogs
- HCI in the Broadest Sense
 - Cognitive science
 - Mental models
- Joint Development as an Integrated System
 - $\circ~$ In conjunction with the Explainable Models
- Existing Machine Learning Techniques
 - $_{\odot}~$ Also consider explaining existing ML techniques

Psychology Theories of Explanation

- Structure and function of explanation
- Role of explanation in reasoning and learning
- $\circ~$ Explanation quality and utility
- Theory Summarization
 - Summarize existing theories of explanation
 - Organize and consolidate theories most useful for XAI
 - $_{\odot}~$ Provide advice and consultation to XAI developers and evaluator

Computational Model

- Develop computational model of theory
- $_{\odot}~$ Generate predictions of explanation quality and effectiveness
- Model Testing and Validation
 - $\circ~$ Test model against Phase 2 evaluation results

DARPA B.4 Emphasis and Scope of XAI Research

DARPA DoD Funding Categories

Category	Definition
Basic Research (6.1)	Systematic study directed toward greater knowledge or understanding of the fundamental aspects of phenomena and/or observable facts without specific applications in mind.
Applied Research (6.2)	Systematic study to gain knowledge or understanding necessary to determine the means by which a recognized and specific need may be met.
Technology Development (6.3)	Includes all efforts that have moved into the development and integration of hardware (and software) for field experiments and tests.

Explainable AI – Challenge Problem Areas

An analyst is looking for items of interest in massive multimedia data sets

An operator is directing autonomous systems to accomplish a series of missions

- Developers propose their own Phase 1 problems
 - Within one or both of the two general categories (Data Analytics and Autonomy)
- During Phase 1, the XAI evaluator will work with developers
 - Define a set of common test problems in each category
 - Define a set of metrics and evaluation methods
- During Phase 2, the XAI developers will demonstrate their XAI systems against the common test problems defined by the XAI evaluator
- Proposers should suggest creative and compelling test problems
 - $\circ~$ Productive drivers of XAI research and development
 - Sufficiently general and compelling to be useful for multiple XAI approaches
 - $\circ~$ Avoid unique, tailored problems for each research project
 - Consider problems that might be extended to become an open, international competition

DARPA C.1 Data Analysis

- Machine learning to classify items, events, or patterns of interest
 - In heterogeneous, multimedia data
 - Include structured/semi-structured data in addition to images and video
 - Require meaningful explanations that are not obvious in video alone

Proposers should describe:

- Data sets and training data (including background knowledge sources)
- Classification function to be learned
- Types of explanations to be provided
- \circ User decisions to be supported
- Challenge problem progression
 - Describe an appropriate progression of test problems to support your development strategy

- Reinforcement learning to learn sequential decision policies
 - For a simulated autonomous agent (e.g., UAV)
 - Explanations may cover other needed planning, decision, or control modules, as well as decision policies learned through reinforcement learning
 - Explain high level decisions that would be meaningful to the end user (i.e., not low level motor control)

• Proposers should describe:

- Simulation environment
- Types of missions to be covered
- $\circ~$ Decision policies and mission tasks to be learned
- Types of explanations to be provided
- $\circ~$ User decisions to be supported
- Challenge problem progression
 - Describe an appropriate progression of test problems to support your development strategy

- XAI developers are presented with a problem domain
- Apply machine learning techniques to learn an explainable model
- Combine with the explanation interface to construct an explainable system
- The explainable system delivers and explains decisions or actions to a user who is performing domain tasks
- The system's decisions and explanations contribute (positively or negatively) to the user's performance of the domain tasks
- The evaluator measures the learning performance and explanation effectiveness
- The evaluator also conducts evaluations of existing machine learning techniques to establish baseline measures for learning performance and explanation effectiveness

D. Technical Areas

• TA1: Explainable Learners

- Multiple TA1 teams will develop prototype explainable learning systems that include both an explainable model and an explanation interface
- TA2: Psychological Model of Explanation
 - At least one TA2 team will summarize current psychological theories of explanation and develop a computational model of explanation from those theories

• TA1: Explainable Learners

- Each team consists of a machine learning and a HCI PI/group
- Teams may represent one institution or a partnership
- Teams may represent any combination of university and industry researchers
- Multiple teams (approximately 8-12 teams) expected
- Team size ~ \$800K-\$2M per year
- TA2: Psychological Model of Explanation
 - This work is primarily theoretical (including the development of a computational model of the theory)
 - Primarily university teams are expected (but not mandated)
 - One team expected

Challenge Problem Area

- Select one or both of the challenge problems areas: data analytics or autonomy
- Describe the proposed test problem(s) you will work on in Phase 1
- Explainable Model
 - Describe the proposed machine learning approach(s) for learning explainable models
- Explanation Interface
 - Describe your approach for designing and developing the explanation interface
- Development Progression
 - $\circ~$ Describe the development sequence you intend to follow
- Test and Evaluation Plan
 - Describe how you will evaluate your work in the first phase of the program
 - Describe how you will measure learning performance and explanation effectiveness

• Theories of Explanation

- Describe how you will summarize the current psychological theories of explanation
- Describe how this work will inform the development of the TA1 XAI systems
- Describe how this work will inform the definition of the evaluation framework for measuring explanation effectiveness by the XAI evaluator

Computational Model

- Describe how you will develop and implement a computational model of explanation
- Identify predictions that might be tested with the computational model
- Explain how you will test and refine the model

Model Validation

- Describe how you will validate the computational model against the TA1 evaluation results in Phase 2 of the XAI program
- The government evaluator will not conduct evaluation of TA2 models

E. Schedule and Milestones

	2017	2018		2019	2020	2021				
	APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR	MAY JUN JUL AUG SEP OCT NOV DE	DEC JAN FEB MAR APR	T NOV DEC JAN FEB MAR APR M.						
	PHASE 1: Technology Demo	nstrations								
Evaluator	Define Evaluation Framework	Prep for Eval Anal Eval 1 1 Res	alyze sults Prep fo	or Eval 2 2 Res	lyze Prep for Eval 3 3	Analysze Results & Accept Toolkits				
TA 1	Develop & Demonstrate Explainabl (against proposed problem	e Models Eval s) 1 (ag	Refine & Test Exp Learners gainst common	plainable problems)	efine & Test Explainable Learners ainst common problems)	Deliver Software Toolkits				
TA 2	Summarize Current Psychological Theories of Explanation	Develop Computation Explanation	nal Model of	Re Comp	efine & Test utational Model	Deliver Computational Model				
Meetings	KickOff Progress Report Tech	Demos	Eval 1 Results		Eval 2 Results	Final				

- Technical Area 1 Milestones:
 - Demonstrate the explainable learners against problems proposed by the developers (Phase 1)
 - Demonstrate the explainable learners against common problems (Phase 2)
 - Deliver software libraries and toolkits (at the end of Phase 2)
- Technical Area 2 Milestones:
 - Deliver an interim report on psychological theories (after 6 months during Phase 1)
 - Deliver a final report on psychological theories (after 12 months, during Phase 1)
 - Deliver a computational model of explanation (after 24 months, during Phase 2)
 - Deliver the computational model software (at the end of Phase 2)

	2019																2020										2021								
	OCTR	NO\	/ DEC	JAN	FE	B MAR	APR	M	AY JU	N JU	JL	AUG	SEP	ост	NO	DV DE	EC J	AN	FEB I	MAR	APR	MAY	JUN	JUL	AL	JG SI	EP OC	T T	NOV DE	JAN	N F	EB M	AR A	PR	MAY
		PHASE 2: Comparative Evaluations																																	
Evaluator		A R	naly esu	yze Ilts Prep for						Eval 2			val 2	A F	na Res	lyz ult:	e s		Pre	ep f	or	 Eva	al 3			Eval 3		Ana Acc	ysz ept	2e & : T	Res ooll	ults	5		
TA 1		(Refine & Test Explainable Learners (against common problems)									Ev 2	val 2		R (ag	efii air	ne	& T Le cor	es ear nm	t Ex ner	pla s pr	aina obl	em	s)		Eval 3		Deli	ver Too	So olk	oftw	are	2		
TA 2		Develop Computational Model											Refine & Test Computational Model								Deliver Computational Model														
Meetings			E	val	1 F	Resu	lts										Eva	12	Re	sul	ts										F	ina			

- Slide Presentations
- XAI Project Webpage
- Monthly Coordination Reports
- Monthly expenditure reports in TFIMS
- Software
- Software Documentation
- Final Technical Report

- Goal: to create a suite of new or modified machine learning techniques
 - to produce explainable models that
 - when combined with effective explanation techniques
 - enable end users to understand, appropriately trust, and effectively manage the emerging generation of AI systems
- XAI is seeking the most interesting and compelling ideas to accomplish this goal

