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Defense Sciences Office: “DARPA’'s DARPA”

* Creates opportunities from scientific discovery
* Invests in multiple scientific disciplines
* Focuses on mission-informed research

DSO: Creating scientific surprise to support national security
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T Finding Great DARPA Ideas

Improve access to innovation from a diverse
group of organizations
« With support, small technology companies and universities are more likely to be
aggressive in pushing capabilities forward. Their products are the ideas they
generate that can turn into prototypes. There are lots of ideas in the world, a few
are good, while true DARPA ideas are rare. Need to fund as many as possible, and
quickly, to find the pearls.

s Need to be efficient. Just spending money will not achieve the desired results.

Connect to new talent pools Find innovation from VC focused companies

. Paradiam shifts in technoloav often come from people who are « Forge connections with these small entities at the beginning
d : : 9y : PEOP while they are wide-eyed about changing the world with
not so deeply indoctrinated in established theories. ) : ) :
innovative technologies to advance warfighter needs.

Next breakthrough,
paradigm-shifting
technology
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T Finding Great DARPA Ideas
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.G DARPA Innovation Fellowship

« 2-year Fellowship for early career scientists
SEI=NTIS TSMWANT = 3 « 32 recent Ph.D. graduates and 8 active
duty military

to push the limits of technology; 1
decent wages, difficult journey,
long months of scientific analysis, |

« Develop and manage a portfolio of high-
impact exploratory efforts

constant risk of failure, outcome uncertain; | « Paradigm shifts in technology often come
honor and recognition in case of success. from those not deeply indoctrinated in
established theories

0ARPA) | DSO CEELERNCE LR  + Build a long-term pool of diverse talent that
can focus on national security
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DARPA Innovation Fellowship

What is the Innovation Fellowship?

A 2-year Fellowship at DARPA for early career scientists, who received their Ph.D. within the last 5 years. Fellows develop
and manage the Advanced Research Concepts (ARC), a portfolio of high-impact exploratory efforts to identify breakthrough
technologies for the Department of Defense.

Why become an Innovation Fellow?

Drive technological innovation

Fellows have the opportunity to influence the direction of defense research through developing ARC topics, evaluating proposals,
making funding decisions, and assessing the impact of further investment on problems of importance to national security.

Engage with prominent scientists

Fellows travel across the country to visit leading researchers at top university, industry, and government labs and learn about the
revolutionary research they are conducting.

Strengthen your transferable skills

Fellows work across a broad range of scientific fields and gain a deep understanding of the big-picture scope of the state of the art of
science and technology.

Advance your career opportunities

Join an extraordinarily rich, technologically-focused network of DARPA Program Managers, military service members, and scientific and
technical experts.
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i1y Advanced Research Concepts (ARC) — A DSO Experiment

« ARC solicitations will focus on answering
high risk/ high-reward “what if?” question

8 topics targeted annually

« 30-60 ideas per topic

« One person funded per year per contract

« Streamlined proposal and contracting
process

A new process to quickly capture and rigorously evaluate many ideas
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DARPA I Seedlings/DOs/Programs

Advanced Research Concepts (ARCs) Seedlings

« Exploratory efforts to evaluate “what if” this is . 3 = « Technology development to move
a possibility from “disbelief” to “doubt”

« Effort: 1 year, 1 FTE « Effort: 1-2 years, limited personnel

* Precise question, broad opportunity, diverse « Target specific problem to enable
answers specific capability

Programs

« Technology development to move from
“possibility” to “capability”

« Effort: Multi-year, multi-disciplinary

+ Development of capability that scales =

Disruptioneerings

« Technology development to move
from “disbelief” to “doubt”

- Effort: 2 years, limited personnel

« Expeditated exploration of potential
capability development
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DAR ¥19 ARC Funding

Funding
Range

Who

DARPA
Performer

$100

Seni
Student

Acade
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Imagining Practical Application for a Quantum Tomorrow (IMPAQT)

The goal of each ARC is to invest in research that may
result in new, game-changing technologies for U.S.
national security

Quantum computing has the potential to bring " %
tremendous advancements to science and could have \

significant implications for national security

IMPAQT will explore hybrid classical/quantum ’ - %,
computational systems that are expected to be e
demonstrated within the next several years )

What are the applications for a quantum system with N*q >
10,000, as a co-processor for a classical computational system?

ONISQ: Optimization with Noisy Intermediate-Scale Quantum devices
N*q: Number of Qubits (N) x Circuit Depth (p)
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DARPA Innovation Fellowship

What is the Innovation Fellowship?

A 2-year Fellowship at DARPA for early career scientists, who received their Ph.D.

within the last 5 years. Fellows develop and manage the Advanced Research
Concepts (ARC), a portfolio of high-impact exploratory efforts to identify
breakthrough technologies for the Department of Defense.

Why become an Innovation Fellow?

Drive technological innovation

Fellows have the opportunity to influence the direction of defense research through
developing ARC topics, evaluating proposals, making funding decisions, and assessing the
impact of further investment on problems of importance to national security.

Engage with prominent scientists

Fellows travel across the country to visit leading researchers at top university, industry, and
government labs and learn about the revolutionary research they are conducting.

Strengthen your transferable skills

Fellows work across a broad range of scientific fields and gain a deep understanding of the
big-picture scope of the state of the art of science and technology.

Advance your career opportunities

Join an extraordinarily rich, technologically-focused network of DARPA Program Managers,
military service members, and scientific and technical experts.

Advanced Research Concepts (ARC)

« Portfolio of fundamental research efforts for
assessing the impact of further investment on
problems of national security importance.

+ Several topics are released per year, each targeting
a specific technical area.

www.DARPA.mIl/ARC

For more information on the Fellowship visit:
https://www.darpa.mil/work-with-us/darpa-
innovation-fellowship

To apply submit CV/resume and cover letter to:
fellowship@darpa.mil

U.S. citizenship is required
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Discovering Unknome Function (DUF)

Dr. René Xavier, DARPA Innovation Fellow




DPA The Importance of High-Confidence Gene Function Annotations

Biomanufacturing Bioenergy

Explains biological phenomenon

Basis for novel disease therapies and biotechnologies
Improved crop vields

Increases sustainability

.... many, many more

EzumelImages

Food Security Whole-Cell Modeling

Biomedical

Reprinted with permission from J Agric Food Chem. Image by Martina Maritan, Scripps Research Adv Mater. 2023;e2211147.
2020;68(7):1935-1947. doi:10.1021/acs.jafc.9b06615. doi:10.1002/adma.202211147

Copyright 2020 American Chemical Society



DPA Discovering Unknome Functions (DUF)

Challenges to Predicting

Phenotype from

Genotype Why?

Outcome

ARC Funding
Opportunity: o O Noisy Input Data
High-Throughput Gene ® ' ; Functional Dark Matter

Function Annotation 6

Why?

Solution

Low-Throughput Batch Effects

Experiments Missing Metadata

Risky Research to Fund Irreproducible Methods

60 — Six sigma

Well-annotated

3
. Unknome
]

Not enough information for automated assignment
Pseudogene or phantom gene

—

gene function
annotation

)

o~
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<

% High-

8o throughput
8
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Depleting the Unknome through reproducible high-throughput
gene function annotation methods

Oxford Uni. Press 2019, 47(5), 2446-2454;
https://doi.org/10.1093/nar/gkz030



DARPA JReT e Capabilities

Technological Sweet Spot:

« Automated cultivation techniques, microfluidics, single-cell ‘omics, multi-omics, bioinformatics, cloud

computing, whole-cell modeling, artificial intelligence, machine learning, computational microscopy, etc...
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Cell 2012, 150(2), 389-401; https://doi.org/10.1016/j.cell.2012.05.044 Mol. Sys. Bio. 2018, 14(6) e8124 https //d0| 0rg/10.15252/msb.20178124 Int. J. Mol. SCI 2019, 20(6) 1276; https://doi.org/10.3390/ijms20061276
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multi-omics capabilities big data analysis with bioinformatics large-scale /n vivo validation experiments



Technical Challenges

1. Predict gene function DUF experimental design
Current Methods: gene knockouts; database homology; multi-omics data should include:

analysis; machine learning (ML); artificial intelligence (AI)

v Genels) of interest with
Challenges: incorporating molecular dynamics and spatiotemporal context; Likkle ko no annockakion

homology creep; versioning; computational power

v Quality control strategies

2. Validate gene function v Well-documented metadata
Current Methods: v Biological and technical
/n vitro: protein-to-protein interactions; fluorescent imaging; molecular probes re[ptnco&es

v FAIR data management

v Annotation confidence
scoring system

biochemically: enzyme kinetics; stochastics; determination of substrates,
intermediates, and products

/n vivo: gene overexpression; phenotype rescuing

Challenges: low throughput; immense biological diversity




DPA Successful Abstract

A successful abstract will discuss:

Innovative high-throughput methods capable of annotating unknown gene function

A clear technical justification of the method

« Better than current state-of-the-art

A clear research plan and experimental design

The desired goals and output of the study

The technical ability of the proposer to successfully pursue this research
« Equipment, facilities, personnel

* Preliminary data for full-time postdoc



DUF ARC Goals

» Diversity drives innovation: Cast wide net to catch
innovative ideas for reproducible high-throughput gene

N " High-confidence gene function annotation will benefit
e multiple research areas

Rapidly generate high-confidence gene function annotations to provide critical knowledge for the advancement of
biotechnology in areas vital to the DoD




Unclassified

DUF ARC Agenda Review

0815-0900

Workshop Objectives:

Check-in and badging at Convene

2023 Discovering Unknome Function (DUF) Workshop
Dr. René Xavier | December 12, 2023 | Hybrid
Convene at One Boston Place
201 Washington St. | Boston, MA 02108

Understand the DUF Advanced Research Concept structure and how to apply.

**Send all DUF ARC questions to DUF@darpa.mil**

Understand the current capabilities for discovering gene function.

Understand the current challenges to discovering unknown gene function (The Unknome).

Speaker, Organization

0900-0915

Introduction to Advanced Research Concepts

Ms. Ana Saplan, ARC Manager

0915-0930

Introduction to the DUF Workshop

Dr. René Xavier, DARPA Innovation Fellow

0930-1000

1030-1200

1200-1300

1300-1430

Keynote - Solving the functional puzzle for unknowns:
Lessons from 30 years of data mining

Dr. Valerie de Crecy-Lagard, University of Florida

1000-1030 MORNING BREAK

Lightning Talks (<10 min)

The meanings of function in biology

Dr. Anne-Ruxandra Carvunis, University of Pittsburgh

Approaches to tackling the unknome

Dr. Sean Munro, MRC-LMB, Cambridge

Systematically discovering and harnessing phenotype-driving

Dr. Gloria Sheynkman, University of Virginia

Annotation and characterisation of functional noncoding RNA

Dr. Wilfried Haerty, Earlhamm Institute

Multiscale modeling of intracellular networks and processes

Dr. James Faeder, University of Pittsburgh

Developing reproducible bioinformatics pipelines

Dr. Olaitan Awe,
The Jackson Laboratory for Genomic Medicine

QC and standards overview
LUNCH

Dr. Samantha Maragh, NIST

**Send all DUF ARC questions to DUF@darpa.mil**
Lightning Talks (<10 min)

Beyond the genome: multi-omics across scales

Dr. Kristin Burnum, PNNL

Characterizing bacterial genes with large-scale genetics

Dr. Adam Deutschbauer, LBNL

High-throughput culturomics to identify microbial dark matter

Prof. Harris Wang, Columbia University

Discovery of novel lineages to expand unknome

Dr. Frederik Schulz, DOE Joint Genome Institute

Identification and prioritization of biosynthetic gene clusters for
commercial (meta-)genome mining

Dr. Zachary Charlop-Powers, Ginkgo Bioworks

Genomics aided host and strain engineering for biotechnology

Dr. Aindrilla Mukhopadhyay, LBNL

Integrative multi-scale modeling of cellular systems

Dr. Eran Agmon, University of Connecticut Health

Progress in modeling microbial mechanisms

Dr. Christopher Bettinger, DARPA BTO PM

1430-1500 AFTERNOON BREAK
1500-1545 Small Group Discussions
1545-1645 Outbriefs of Small Groups
1645-1700 DUF ARC Answer Session
1700 No-host social: Union Oyster House | 41 Union Street | Boston, MA

Questions

Send all DUF ARC questions to email. Do not
put ARC questions in chat or ask speakers.

DUF@darpa.mil

Answers will be given during DUF ARC answer
session at 16:45.

Speaker Q&A: Immediately after talk, if time
permits, and during breaks.



Solving the functional puzzle for
unknowns: Lessons from 30 years of
protein function discovery

Valérie de Crécy-Lagard

Dpt of Mlcg‘oggor!ggg ?nnsotlit(iﬁg Sciences

University of Florida

N




Anne-Ruxandra Carvunis, PhD

Department of Computational and Systems Biology
Pittsburgh Center for Evolutionary Biology and Medicine
University of Pittsburgh School of Medicine

The meanings of
in biology

The Garvunis Bab

= Change and Innovation in Biological Systems smm

PITTSBURGH

1




What is biological “function”?

Very complex and debated definitions.



The ENCODE controversy

Open access | Published: 05 September 2012 80% of the human genome is functional
Anintegrated encyclopedia of DNA elementsin the
humangenome

The ENCODE Project Consortium

Nature 489, 57-74 (2012) | Cite this article

299k Accesses | 11k Citations | 981 Altmetric | Metrics



The ENCODE controversy

Open access | Published: 05 September 2012 80% of the human genome is functional
Anintegrated encyclopedia of DNA elementsin the
human genome JOURNAL ARTICLE

The ENCODE Project consortium 0T the Immaoortality of Television Sets: “Function”
| in the Human Genome According to the Evolution-
Hature 489, 5778 (2012) TEIet pree Gospel of ENCODE 3

299k Accesses ( 11k Citations | Dan Graur &, Yichen Zheng, Nicholas Price, Ricardo B.R. Azevedo, Rebecca A. Zufall,
Eran Elhaik  Author Notes

Genome Biology and Evolution, Volume 5, Issue 3, March 2013, Pages 578-590,
https://doi.org/10.1093/gbe/evt028
Published: 20 February 2013  Article history v

the fraction of the genome that is evolutionarily conserved through
purifying selection is less than 10%



Evolutionary origins of new genes: de novo gene emergence

Carvunis et al., 2012, Van Oss et al 2019

Non-genic
sequence

Translation

Proto-gene

Novel gene

-

raeds

b—

When is a (novel) gene “functional”?



The meanings of function in biology and the problematic

case of de novo gene emergence Keeling et al eLife 2019

A philosopher, a biochemist, a rhetoric scholar and me.. Meanings

.. Analyzed 20 abstracts in the de novo field... Evolutionary
Implications

.. Found 5 meanings... ) )
Physiological
Implications

Interactions

Capacities

Expression

Vague




The meanings of function in biology and the problematic

case of de novo gene emergence Keeling et al eLife 2019

A philosopher, a biochemist, a rhetoric scholar and me.. Meanings

.. Analyzed 20 abstracts in the de novo field... Evolutionary
Implications

.. Found 5 meanings... ) )
Physiological
Implications

.. and still interpreted sentences differently!

Interactions
Four independent readers Consensus Consensus
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N Expression
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Number of meanings per instance Number of meanings per instance Meaning



Contribute to cellular physiology...
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When is a (novel) gene “functional”?

Ilcan See
DNA sequence  Protein sequence  Protein function T
—
ICannot See
. . Purifying
Mutation Frameshift Selection
N N



My lab’s approach (and DUF dream): consider the different components of
function independently and their relationship to each other

Natural |& - .
Sesolion MYJ
”~

Interaction/ | ~
Mechanism

Evolutionary fate:
turnover or
conservation

Interactions
within
system

Localization

Structure

Expression

Keeling et al eLife 2019; Parikh et al Yeast 2022 Intrinsic physical capacities 10
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The Free Encyclopedia

From Wikipedia, the free encyclopedia

Thank you!
The Garvunis lab

= Change and Innovation in Biological Systems smm
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MRC Laboratory
of Molecular
Biology

Approaches to tackling the unknome

Sean Munro

Matthew Freeman

Tim Stevens



Human Unknome

Genome sequenced in 2003 19,969 protein-coding genes

~20-30 of these genes have no known molecular function

e.g. 3033 of these genes are not in PubMed

Unknome of life
Complete genome sequences for 34,928 organisms (JGI GOLD)

>600 million proteins from meta genomics (EBI MGnify)



Addressing the human unknome

1) Build an Unknome Database

Quantify "known-ness" by collating experimental evidence from model
organisms

2) Select ¢ 200-300 well-conserved but unknown human
proteins and examine using Drosophila genetics

3) Use machine learning to predict function of unknown
human proteins

With Matthew Freeman (Oxford University) and Tim Stevens MRC LMB



1) Constructing an Unknome Database

i) Cluster orthologous proteins from humans and 11 model organisms

PANTHER “a comprehensive, annotated library of gene

Classification System famlly phy|ogenet'c trees pantherdb.org

Cluster UKP01389

MITOCHONDRIAL IMPORT INNER

MEMBRANE TRANSLOCASE .
SUBUNIT TIM10 H.sapiens TIMM10

B —E M. musculus TIMM10
R. norvegicus  TIMM10
G.gallus TIMM10
D. rerio TIMM10
D. melanogaster TIM10
C. elegans TIN-10
S.cerevisiae TIM10 / TIM12
S. pombe tim10
D. discodeum  timm10

I_ A. thaliana AT2G29530.3

E. coli _



1) Constructing an Unknome Database

Cluster UKP01389

MITOCHONDRIAL IMPORT INNER
MEMBRANE TRANSLOCASE
SUBUNIT TIM10

—

i) Calculate knownness score for cluster

from Gene Ontology terms

GO consortium: systematic annotation of genes

using a controlled vocabulary

H.sapiens

M. musculus
R. norvegicus
G.gallus

D. rerio

D. melanogaster
C. elegans
S.cerevisiae
S. pombe

D. discodeum
A. thaliana

E. coli

Weighted score

TIMM10
TIMM10
TIMM10
TIMM10
TIMM10
TIM10

TIN-10

TIM10 / TIM12
tim10

timm10
AT2G29530.3

5.9

2.8
2.5
0.5

0.5 590
0.5

Knownness

2.4
2.4/1.6
0.5
0.5
0.5



1) Constructing an Unknome Database
i) Online: www.unknome.org
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http://www.unknome.org
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2) RNAI screen for phenotypes using Drosophila

RNAI against 260 genes conserved in humans and flies

Gal4 expressed in  gene for dsRNA Assays M/sual,
tissue of choice hairpin quantitative
B33 5 Lethals: 62 / 260 genes (24%)

L Z- GAL 30 = ‘ Specific screens: 59 / 198 genes
specie promoter @ \/:As inverse repeat Tissue growth 3
/ Male fertility 11
S "N Al standed Female fertility 2
RNA Targeting of Lifespan -AA 9
interference / ooy Lifespan ROS 13
target mRNA Proteostasis 6

{ degradation ,

I, A Locomotion 6

Unknown proteins have key roles even in laboratory conditions

Functional screening in flies is painfully slow

Rocha et al. (2023) PLOS Biology €3002222



3) Machine learning to predict the function of
unknown human proteins

Use genome-wide data to group proteins involved in same
processes. Start by looking at stable protein complexes

Proteins in the same complex tend to have a similar level,
phenotype, location and species conservation

RNA-seq; 182 cell lines, 18,730 proteins

Shotgun proteomics; 579 cell lines, 14,600 proteins
Fractionation MS (LOPIT); 40 fractions, 6,575 proteins
CRISPR knock-out (DepMap); 990 cell lines, 17,190 proteins

Orthologue similarity; 246 eukaryote species, 20,250 proteins



Proteome attention deep neural network

Input experimental
profiles

Protein abundance
profiles (14,000)

Phylogenetic
profiles (20,000)

Gene expression
profiles (18,000)

+ further data...

128

128

128

Learn compressed,
fixed-length profiles

128 values

18,000 proteins

18,000 proteins

18,000 proteins

Adapt combined profiles
to each query with

attention layers

r

Query protein

1x128

Proteome
18,000%128

Repeated
multi-head
attention

\

Train to identify which proteins are

in the same complex
(CORUM database of complexes)

18,000

Predictions

H N EEEEEEEEEE N

J

Query-adapted Vs
mms wammssmsmE W
18,000%128

‘Truth’
(known complexes)

Train to minimise
predictive error;
learn DNN weights



Proteome attention deep neural network

Trainon 50%  Recall 0.99 Precision 0.95 Test on 50% Recall 0.57 Precision 0.77
0.955 A 0.785 A
All 5 sources
no Phylo,
"""""""""""""""""" n'o Eo;ti , 0.780 - i
1
0.950 - . : All 5 sources
no Expr 1 0775 F = = = = = = = m —————— / aiin— @
(- no PhyJoﬂ : (- no Expr :
9 T I 9 |
w 1 D 0.7701 ot
8 0.945 - no Essen_ : 8 no Lopit :
a ! a !
1 0.765 1 no Essenn 1
1 1
1 1
0.940 4 1 1
1 0.760 A 1
no Abun ' o0 Abun !
O 1 1
1 1
1 0.755 A 1
1 1
0.935 - . .
1 1
0.'88 0.:.5)0 0.I92 0.I94 0.'96 O.éB 1.60 0.I48 0.‘50 0.I52 0.l54 0"56 0.I58 O.I60
Recall Recall
Five sources of data:
Proteomic abundance, mass spec All sources combine to make better predictors
Expression, RNA-seq
Knock down gene essentiality (DepMap) Proteomic abundance is the best source

Sub-cellular fractionation proteomics (LOPIT)
Eukaryote phylogenetic profiles



Testing predictions using AlphaFold 2

TMOSF2

TM9SF2 - 10 hits from DNN:
Test by AF2 - one looks real

Recent progress in protein
structure/interaction prediction offers
great opportunities
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Annotation and characterisation of
functional noncoding RNA

Wilfried Haerty

wilfried.haerty@earlham.ac.uk
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Evolution of the functional part of a genome

constraine

Genome Protein-coding

non-coding size (MB) genes

H. sapiens . 3,102 19,955

M. musculus . 2,731 21,834
G. gallus - 1,047 16,878

T. rubripes - 393 21,411

D. melanogaster _ 169 13,968

I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Proportion of the genome

Haerty & Ponting. 2014. Annu. Rev. Genomics Hum. Genet.

E Earlham Institute

www.earlham.ac.uk



Impact of variation within the non-coding genome on phenotype




We integrate large data sets to understand the impact of
genetic variation on traits

Comparative Functional
genomics sequence

characterization Predict the impact of

variation on gene expression
* Novel transcripts and protein representation

Population * Regulatory

Identify variants associated with
phenotypes of interest including
disease

genomics elements

Functional
genomics

E Eartham Institute

www.earlham.ac.uk



Non-coding RNAs found across kingdoms and in different flavours

a Enhancer- Promoter- 3'-UTR-
like RNA Bidirectional  associated Intronic  associated
RNA RNA RNA RNA Intergenic RNA
Enhancer b a ; E &
RNA » -
_E i ._._- LiLiiiiiiLl
LABRRRRARRAI
Enhancer Promoter Telomere repeats
IncRNA functions
* Transcriptional and post-transcriptional regulation
* Genomic site-specific epigenetic reprogramming Antisense RNA Telomere repeat-
* Long-range genomic interactions containing RNA
* Scaffolds for nuclear macromolecular assemblies
* Maintenance of stoichiometry and molecular titration

Qureshi and Mehler. 2012. Nat. Rev. Neuro.

E Earlham Institute

www.earlham.ac.uk



Name of IncRNA

Mechanism of action

Mutant phenotype

WWW.€E4

XIST X chromosome regulation (imprinting and X chromosomal dosage compensation) Mus musculus: females inheriting
paternal allele were embryonic lethal;
males fully viable

FENDRR Thought to act by binding to PRC2 and/or TrxG/MLL complexes to promote the Mus musculus: Embryonic lethal

methylation of the promoters of target genes, thus reducing their expression; essential for
normal development of the heart and body wall
roX1, roxX2 Required for sex chromosome dosage compensation in Drosophila (hyper-transcription of | Drosophila melanogaster: None, except
X chromosome in males) when in combination: male-specific
reduction in viability
HOTAIR The 5' end of HOTAIR interacts with a Polycomb-group protein Polycomb Repressive Mus musculus: Spine and wrist
Complex 2 (PRC2) and as a result regulates chromatin state - required for gene-silencing of | malformations
the HOXD locus by PRC2. The 3' end of HOTAIR interacts with the histone demethylase
LSD1; epigenetic differentiation of skin over the surface of the body
COOLAIR Suggested to function in early cold induced silencing of FLC transcription in Arabidopsis None reported
thaliana
COLDAIR Required to recruit PRC2 to the FLC locus allowing deposition of the repressive H3K27me3 | Arabidopsis thaliana: Late flowering after

chromatin mark. Binds PRC2 complex protein CURLY LEAF (CLF); required for stable
repression of FLC after vernalization

vernalization

stitute



Nuclear IncRNAs

Pyeom—— e LncRNAs — Many mechanisms

€ Vot s O Lttt A st one Pod AL e

~~~~~~

Chromatin modification in
* CIS:
* recruitment of DNMT3 / PCR2
« transcriptional interference

* frans:

L I e L )

=50 W ._ * recruitment of chromatin modifying complex
JJJJEJJJV / Jp”' 23 « transcriptional regulators

LncRNASs can act in :
« competition with mRNAs from miRNAs

s P (ceRNAs)
K. 7% % Sy « miRNA sponges
S s *’v{’r 5, ° / + modulation of RNA stability

Be e

E Earlham Institute
Fatica & Bozzoni. 2014. Nat. Rev. Genet.




Annotated but not analysed

« Tens of thousands of loci have been annotated in Eukaryotes genomes
« The function and importance of the vast majority of which remain to be determined
+ If biologically relevant the function can be carried out by:
* The act of transcription over DNA elements
* The transcript
« A dozen loci have been knocked out and tested in vivo leading to contrasting results:
* lethality, developmental morphological defects (Xist, Fendrr)
« phenotypes under specific conditions (BC1)

* no phenotypes (Visc2)

E Earlham Institute

www.earlham.ac.uk



Tens of thousands of loci — how many are relevant?

« Up to > 100,000 InRNAs identified depending on publications

« Most are expressed in a single tissue, cell-type at low level

»How do we extract likely functional loci from transcriptional noise?

E Earlham Institute

www.earlham.ac.uk



From identification to validation

Conservation

ldentification e
Reproducibility

Genomes * Individual « Species
Annotations — Cells — Shared
“Omics” data — Tissues — Specific

Transcriptome » Population

ChIP-Seq — Development

CAGE — Tissues

www.earlham.ac.uk

Validation

 Natural variation

* Knock out / knock
down

— Cellular impact

— Organismal
impact

E Earlham Institute



Omic data integration for functional loci identification

Large scale
transcriptomic data

e cells ‘ Primary ‘ Consolidated ‘ Functional ‘ Experimental
Annotation annotation prediction validation

* Tissues

 individuals I I
Composition
Conservation * Network |
Omics reconstruction
e CAGE * Domain
e ChIP-Seq identification
« ATAC-Seq * Genotypes
. integration

E Earlham Institute

www.earlham.ac.uk



Omic data integration for functional loci identification

* If a IncRNA were to be biologically relevant, one would
expect:

» Reproducible expression between individuals
« Associated genomic features
* Phenotype upon disruption

E Earlham Institute

www.earlham.ac.uk



In-vivo phenotyping of knockout / knockdown mutants

Caenorhabditis elegans

E Earlham Institute

www.earlham.ac.uk



In-vivo phenotyping of knockout / knockdown mutants

« Annotation of 3,397 IncRNAs using 207 publicly available RNA-Seq libraries

* Integration of all available epigenomic data

» ChlP-Seq, CAGE-Seq, PAR-CLIP

» Selection intergenic INncRNAs

www.earlham.ac.uk

protein coding |
mono exon

protein coding |
multi exon

protein coding |
intron

IncRNA
multi exon

IncRNA
mono exon

IncRNA
intron

intergenic

—--
o[} —-
— - -
e [|—

0.2 0.4 0.6
GC content

PhyloP score

D
1

N
1

Protein coding

IncﬁNA

E Earlham Institute



In-vivo phenotyping of knockout / knockdown mutants

2004 coding mutt sronic : 5 0- 1
n — IncRNA mono exonic !
GCJ — IncRNA multi exonic 05 7 ' l
G 150- - o ?
— E) 0.4 4 8 Lo s | °
5 100- S Y !
° 2 EBEB ., | :
Q O >
E 50- O o
= 0.2 ! 0.5 = B8
0- °
0.00 0.25 0.50 0.75 1.00 . . Y . . .
Proportion high others low high others low

Akay et al. 2020. BMC Biol
y E Earlham Institute

www.earlham.ac.uk



In-vivo phenotyping of knockout / knockdown mutants

* Novel annotations of IncRNAs in C. elegans

» Generation of knockout mutants for 10 multi-exon IncRNAs

* No evidence for sterility, embryonic lethality or abnormal body development
« Reduction of brood size for 6 knockouts

* Reduction of growth rate for 4 mutants

* Phenotypes recapitulated for 2 loci when using knockdown

Akay et al. 2020. BMC Biology

E Earlham Institute
www.earlham.ac.uk



Omic data integration for functional loci identification

O
AR
£/

age

population

<«

E Earlham Institute

www.earlham.ac.uk



Reproducibility of expression

1.001 | —
|
|
i « 4,232 (21,092) new loci annotated
c 0.751 |
9O I
g * up to 65% of IncRNAs found in less
o
S than three individuals
v 0.50-
=
©
é’ « 278 IncRNAs identified in all
S5
“ 0.25 individuals
<1%
— IncRNA mono-exon 60.0%
== |IncRNA multi-exon 29.7%
- coding mono-exon 12.2%
0 00_ | - coding multi-exon 4.1%
" |
0 100 200 300

Number of individuals
E Earlham Institute

www.earlham.ac.uk



Reproducibility of expression

1.00 -

0.75 -

phastCons score

0.25 -

0.00 -

www.earlham.ac.uk

0.50 -

=

coding

InNcRNA

COUNTS
ES high
$ low

» Conservation

« Composition

* Epigenetic marks
 eQTLs / GWAS hits

E Earlham Institute



Identification of functional IncRNAs

Tens of thousands of IncRNAs have been annotated
B 5 a ¥

Signatures associated with likely functional loci can be ‘
—  protein-coding |
detected 024 - multi-exonic IncANA M i

mona-exanic INCRNA '

« EXxpression

* Reproducibility ?m- r“'yﬂf" v l i ol )
« Nucleotide composition § 4 VI MWW, i
» Conservation |
« Chromatin marks - \

We have developed approaches to detect motifs (Poddar et o mimmi::mwfm, Lo

al. 2023. arXiv arXiv:2311.12884v1 )

: ) ) oo Haerty and Ponting. 2015. RNA
We can predict mechanism (transcript vs transcription)

Observation of phenotypes upon knockout / knockdown
E: Eartham Institute

www.earlham.ac.uk



From locus identification to function — Need for high-throughput assays

« High-throughput assays using human iPSCs
« Multimodal Perturb-Seq
« Dropout assays
» Positive selection assays

« Use of model organisms for in-vivo phenotyping:

e Estimation of relative and absolute fithess
 Effect of interacting genes

www.earlham.ac.uk

~

(2) Single cell RNA-Seq of
barcoded droplets
(3) Next-Gen sequencing of library

G _.

\

Regulatory inference

5 from perturbations

(1) Pooled CRISPR screens

o, cle
\ [ Y=XB
- & o & _ Regularized inear model )

A

Epistasis
decomposition

Controls Perturbations

Increasing
number of cells

Power
analysis

Dixit et al. 2016. Cell.

E Earlham Institute
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Multiscale modeling of
intracellular networks and
Drocesses

James R. Faeder
Department of Computational and Systems Biology
University of Pittsburgh

Discovering Unknome Function (DUF) Workshop
Boston, MA
December 12, 2023



Motivation for studying Cell Decision

Processes

Goals

* Develop predictive models
of signaling networks

* Understand mechanisms
that control outcome

* Exploit understanding to
develop new control
strategies for medicine and
engineering

tyrosine

kinase
Frizzled reCcepltor v
receptor

CT W
"f"“s;rg. —

che AKUPKE

=1

Rafl P MEKK) I

'
INKK MEK3/6

SEK =4 GSK-38

|
HIFAE — protein synthesis

i
I B-<atenin
PKR

Myc
|

S NN TR

Cdc2s gene expression

L /
X =

AT

The Biology of Cancer (© Garland Science 2007)

* We use an approach called “rule-based modeling” (RBM) to build and

simulate models

* BioNetGen is software for rule-based modeling that our group maintains and

develops




Challenges of modeling cell regulatory networks

* Proteins are multi-functional

multiple sites of posttranslational modification

rrrr Vo h
LYN SH2 1 P
M i L . . .
Bk ] PH LLTH : s6 Hse T multiple sites of binding
CSK j [ ]
- Domains with
enzymatic

Protein tyroslno phosphatases function

> H—
SHP1 SH2 SH2 H .

* Representing their known interactions requires

handling of combinatorial complexity

a Components b Interactions

Y T' :ﬁc»?%!

e e i o

Small number of rules

States of the Madel

S il 2

N . P
’ ’:‘ ) .!l‘.ﬂ
:3';:1-;M b oo 0 b: a mz
; » PRP W
300 denor Slaten ‘.".’ Q"“.
an ab

The model has 354 states (2954 If the ligand was & trimer)

Small number of components and interactions =»huge number of possible species and reactions



What is Rule-based Modeling (RBM)?

Rules define the interactions of molecules

“Lyn SH2 domain binds to phosphorylated Tyr 218 on the B subunit of FceRI”

Reactants Products Rate Law

A | |
| I \

[ | I
Rule: LYN(SH2) + FceRI(bY _218-P) <-> LYN(SH2!1)_FceRIl(bY 218-P!1) kpL, kmL

T I
bond

Ly

“Don’t write don’t care” — elements not mentioned may be in any state
=» One rule can generate reactions involving many different species

Reaction rate determined by Mass Action kinetics
rate forward = KpL*[Lyn(SH2)]*[FceRIl (bY_218~P)]



Rules bridge between molecular and cellular
scales

Network scale

Rule-based model

Molecular scale



Rule-based modeling enables knowledge
representation on a large scale

FceRl model

'''''

* Precise encoding of modeled structures
and interactions

— * User avoids combinatorial complexity

0 ', e e Amenable to visualization

e * Extensible as knowledge base grows

Faeder et al., J. Immunol. (2003)
Chylek et al., Mol. BioSys. (2011)



Rule-based modeling enables knowledge
representation on a large scale

FceRIl model T cell receptor model

+ + + SLAP—ng
—t ! | Q;C j
‘-" 2 '» e @ pYS71
- - -
s
o
Faeder et al., J. Immunol. (2003)

Chylek et al., PLOS One (2014)



Al Technologies Enabling the
Development of Large Scale Models

[Structural biology ]

Protein-protein
interaction

{ Drug discovery

AlphaFold2
{ Protein design Application areas mech:‘::l;g':::ncuon}
in biology and

medicine

Protein function
prediction

[ Target prediction

Other Applications:
@ Protein evolution;
® Rare disease treatment studies;
o Effects of mutation on treatment;
® Vaccine design,
®



Al Technologies Enabling the
Development of Large Scale Models

0 IN DEPTH ARTIFICIAL INTELLIGENCE

DARPA sets out to automate research

Crash program aims to teach computers to read journals and hatch new ideas.

A YOU Authors Info & Affiliations

SCIENCE - 30Jan 2015 « Vol 347, Issue 6221 « p. 465 -
&» A molecujar
TRAN ':YA RENT .. 'l. SYSte ms
moctss aers blology

Method

Automated assembly of molecular mechanisms at
scale from text mining and curated databases

John A Bachman®'®, Benjamin M Gyori*™'® & Peter K Sorger’*" @



Al Technologies Enabling the

Development of Large Scale Models

The Impact of Large Language Models on Scientific Discovery:
a Preliminary Study using GPT-4

Microsoft Research Al4Science
Microsoft Azure Quantum
lmdsciencediscovery Smicrosoft.con
November, X023

GPT-4 for
Scientific
Discovery
Comgutatonal Partial D*erecn
Dnug Discovery Baotogy : y [ Meterisls Desgn [ E ]
Understandng concects Understanding taciogicsl { [loctonic structaw ) Memcnraton snd [ Krowing basc concepts
n drug dacovery WROLAC WL Peonet and practcos SoNgrng orncipie sbonst POS 3
2 Rassorung wit baal! o Molocolar Oynarucs .
[ Orug-tange? 2nSeyg trckegical ) [ Carnctcinte proposs [ Scbaryg PUEs
Molecular property OesQrang Durmoted uies
( prediction and Dio-aspermerts | Practcs exarvgpie [ Structure ganerstion [ Al fox POEs
[ et oyt [ Progerty prodson
Noved modecime
[ goreenaon L Syrihesa clarrwyg
COOng Mantance 1or P
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Dream/Vision

Manual
Curation and
Automated
Model
Assembly

Sensitivity to
predicted
interactions

Structure-
based
Prediction
Unknown Predicted
interactions Predicted

Gene
Sequence

Network Models Phenotypes
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' What is reproducible code?

Code 1s reproducible if:
- the result of an analysis does not depend on the specific
computational environment in which data processing and

analysis originally took place
- Worktlow will produce the same result when re-run or
run on different computing platforms




' Framework for reproducible code

1. Collect data
2. Develop the pipeline/codes
3. Generate Output

4. Interpret the Output

- B




' Framework (Omic Data Science)

1. Collect data (Biomedical, Omic Sequences etc.)
2. Curate Data

3. Develop the pipeline/code

4. Interpret the Output and Present data (advance our

understanding of biology and health) -



Write Code and Publish it in a findable

Repository (GitHub)

Data

Accessions (SRA, GEO, ENA, RefSeq, Genbank)
Figures

Scripts

Docs

Output

Worktlow (Step by Step sequence of tasks)

Notebooks for Demonstration

LICENSE (Open license)

. README.md [@

=, 52 89 55 9 DGl el

O °




= IS

Workflow Management Systems
enable Reproducible Coding

Nexttlow (Interoperability, Component Reuse, Re-
entrancy, Parallelisation, Allows use of containers,

Reproducibility)

nexciflow @

Snakemake (Python)
Cromwell (WDL/CWL)
Galaxy




' Automate your Pipelines

Language depends on what you’re comfortable
with and your application:

1. Bash

2. Python

3. Perl
4. Java

5. C/C++ and others ...

- B




1.

Some Life Science Project Categories

Bulk Transcriptomics, Metagenomics, Human Genomic
Variation, Pipeline Development, Biomarker Discovery,
Cheminformatics, Clinical Applications, Drug and
Vaccine Design, Antimicrobial Resistance, Population
Genomics, Genome Wide Association Studies, Polygenic
Risk Scores, Mendelian Randomisation, Structural
Bioinformatics, Sottware Development, Epigenomics,
Oncology, Plant Genomics and Machine Learning.




- You can start practicing by using public data
(SRA, GEO, ENA, RefSeq, Genbank)




Research Standard

Open Sclence:
1. Improve the accessibility, quality and efficiency of
science

2. Open Access Articles (APC can be expensive)

3. Research data, code and pipelines are FAIR:
(Findable, Accessible, Interoperable, Reusable)
Documentation: add comments to your code

If we’re not sharing our data when annotating these
unknown genes, 1t’s not helptul.







NIST overview of QC and standards
DARPA Nov 2023

National Institute of Samantha Maragh
H Standards and Technology .
U.S. Department of Commerce Leader, Genome Editi
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Pacific
Northwest
Beyond the
genome:
multi-omics

across scales

Kristin Burnum-Johnson
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Basics of Biological Function

Phenome (n). The set of all phenotypes expressed by a

cell, tissue, organ, organism, or species.

Genotype = Environment = Phenotype




Genome-only based strategies only reveal part of the picture

| est. prokaryotes on Earth

2,200,000 - 4,300,000

Functionally
Annotated

5 8 sequenced bacterial genomes
Lack Experimental

Evidence of Function 3 198,640

Pseudogenes/ - L -
Dbt Cares non-redundant proteins identified

154,000,000

No Evidence
of Function
new protein sequences added

1 ~3,200,000/month

e Our ability to READ DNA far surpasses our ability to UNDERSTAND the information it contains

» Vast majority of genes have unknown/non-validated functional annotation for proteins encoded
* 6,000 of the human genome’s ~20,000 genes are still unknown
* 70% of 154M microbial proteins are unannotated



The flow of molecular information — phenotype

‘ Tissue/Cell Lines O\J\\CS
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: Proteome
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: Protein content, activity
Gene regulation .
: & post-translational
& expression o
modification



The proteome conveys function

2 S5 Proteoforms
mRNA Site-specific
gene splice . features LY
isoforms Proteins . _ \p
. WA > IS
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- S Acetylation - :
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Fatty acylation Ll . "
+ Posttranslational 1 "i'lll Uy
modifications ~1 million
proteoforms

Burnum-Johnson, et al., New views of old proteins: clarifying the enigmatic proteome. 2022 21DOI: (10.1016/j.mcpro.2022.100254)



Understanding biological functions through molecular networks

Parts Lists -+ Interactions — Networks

0 RNA . Regulatory © Metabolites
) MRNA splice isoform

) Protein expression

& Post-translational modifications —o— -
9 ® 7Y x,

9 u\ \V * Enzymatic - g b
| 0, QA =

-

-

Signaling o ?
Co-expression ™

Co-localization 7o Extracellular
Genetic 0

Intracellular

Adapted from Burnum-Johnson, et al., New views of old proteins: clarifying the enigmatic proteome. 2022 21DOI: (10.1016/j.mcpro.2022.100254)



Generalized approach for MS-based omics

Mass Spectrometry

Select .
Extraction Process Separate Mass spectrometry Process Data
Samples
// E - Peptide Ids
* 0 A

L S Y P
l.ln”“l“. T

Elution Time m/z ITLENSDAFYK

Dissociation types

Digest/Leave intact Fractionation labellFree/Labeling

Isotopically label Long/short gradients

Database/Tag
SRM/PRM

DIA/DDA /

Enrich lon mobility
Chemically block Orthogonal solid phases

The biological question drives the approach
Discovery proteomics, targeted proteomics, Post-translational modification (PTM), etc.



Capturing multidimensional biology

PARTS LIST
) RNA

) MRNA splice isoform

) Protein expression
) Post Translational Modifications (PTM)

' Metabolome (Metabolites, Lipids, etc.)

MOLECULAR NETWORK

PN
o /
m
; 7 ..

TIME 4




* Most phenotypes are observed at a global level

« Many cell types or species contribute differentially to the
global phenotype.

* Increasing the spatial granularity of the measurements
enables the understanding of how each component of a
system contributes to the overall phenotype.

Activity zone Efficiency of the overall process

")
~ ",' METABOLITES
v

&
PROTEINS % L)
' 0...'. ..‘.

Increased plant material breakdown

Microbial Community with
phenotype of interest




Metabolome Informed Proteome Imaging (MIPI)

« Map what microbes, enzymes, proteins,
lipids, metabolites and activities can be
correlated with microscale regions in this
ecosystem

» Perform lipidomics, metabolomics, &
proteomics on 12-micron thick fungal garden
sections

——
Increased Plant
Break Down

Fungal Garden Ecosystem

Sample embedding  Cryosectioning » Obtain mechanistic knowledge on how
(HPMC with PVP) (124m thick) lignocellulose is degraded in this ecosystem

©ENERGY
Marija VeliCkovi¢, Ruonan Wu, Yugian Gao, M. Thairu, D. Veli€kovi¢, N. Munoz, C. Clendinen, A. Bilbao, R. Chu, P. Lalli, K. Zemaitis, C. Nicora, J. Kyle,

D. Orton, S. Williams, Y. Zhu, R. Zhao, M. Monroe, R. Moore, B.-J. Webb-Robertson, L. Bramer, C. Currie, Paul Piehowski, K. Burnum-Johnson.
Mapping Microhabitats of Lignocellulose Decomposition by a Microbial Consortium. In press Nature Chemical Biology (2023)



Metabolome Informed Proteome Imaging (MIPI)

Spatial Metabolomics

Laser ablation-based MS

Laser o
Spatial irradiation it # » Matrix-assisted laser desorption/
Metabolomics \" i3 ionization (MALDI) Mass Spectrometry

B Imaging profiles metabolites with a spatial
MALDI-FTICR Mass Spectrometry Imaging resolution of 50-microns and correlate
morphologically unique features with
metabolome hotspots of interest

——
Increased Plant
Break Down

L 1%

Fungal Garden Ecosystem

Sample embedding Cryosectioning
(HPMC with PVP) (12um thick)

©ENERGY
Marija VeliCkovi¢, Ruonan Wu, Yugian Gao, M. Thairu, D. Veli€kovi¢, N. Munoz, C. Clendinen, A. Bilbao, R. Chu, P. Lalli, K. Zemaitis, C. Nicora, J. Kyle,

D. Orton, S. Williams, Y. Zhu, R. Zhao, M. Monroe, R. Moore, B.-J. Webb-Robertson, L. Bramer, C. Currie, Paul Piehowski, K. Burnum-Johnson.
Mapping Microhabitats of Lignocellulose Decomposition by a Microbial Consortium. In press Nature Chemical Biology (2023)



Increased Plant

Break Down

Metabolome Informed Proteome Imaging (MIPI)

Fungal Garden Ecosystem

Sample embedding
(HPMC with PVP)

Laser ablation-based MS

Laser TTO MS
Spat|a| irradiation =
. 3 Fcs
Metabolomics N\ #

MALDI-FTICR Mass Spectrometry Imaging

Spatial Proteomics

Cryosectioning o

: Tissue regions containing these activity
(12pm thick) \

zones are liberated from the slides with laser
capture microdissection and processed in
our PNNL developed Microdroplet
Processing in One-Pot for Trace Samples
(MicroPOTS) chip for high sensitivity mass
spectrometry proteomics

Spatial
Proteomics

MicroPOTS
Microdroplet Processing in One-Pot for Trace Samples



Metabolome Informed Proteome Imaging (MIPI)

Laser ablation-based MS

Microscale multi-omic mapping

Laser TTO MS
Spat|a| irradiation =
Metabolomics " #

12-uym fungal garden ecosystem section
mounted on a glass slide

.Ej
& —

Fungal Garden Ecosystem

75
MALDI-FTICR Mass‘ Spectrometry Imaging .

Increased Plant
Break Down

Sample embedding Cryosectioning
(HPMC with PVP) (12pm thick) \
Spatial 8
Proteomics

MicroPOTS
Microdroplet Processing in One-Pot for Trace Samples



Microscale measurements enable prediction of function

Microscale multi-omic mapping

Lignin degradation microscale
activity zones Blue, Yellow and [Red

Lignin degradation

Plant cell wall

Lignin is a complex organic polymer made up of aromatic compounds in plant cell walls

p-hydroxyphenyl p- hydroxybenzoate

- Q '?; P units R
----- Q_“ p coumarate| J ?
N s )

este r 'SO /N
Protocatechuate

Gualacyl units Vanlllate

OH /gallate

Syrlngyl units

Depolymerlzatlon z}

Ring
cIeavage‘

Syrlngate

Marija VeliCkovic, et. al., Mapping Microhabitats of Lignocellulose Decomposition by a Microbial Consortium. In press Nature Chemical Biology (2023)



Lignin Degradation Pathways

Yellow = high
metabolite intensity

Plant cell wall

Product

Substrate

- 1.2 d-triol ) 2-Maleylacetate
: §§,‘3§2§m L Ring cleavage pathway 157.0142 miz
(C.H-O, - HI /"\  Hydroxyquinol 1,2-dioxygenase [CeHgOs - HI
676-3 & / [EC 1.13.11.37)
om \ /” K04098
°" RE@
VEVEVID , i
OH 1Tmm

_mm
Detected ; X Not detected HO o
m
\ -

Mariia VeliCkovic, et. al.. Mapping Microhabitats of Lignocellulose Decomposition by a Microbial Consortium. In press Nature Chemical Bioloqgy (2023)



Moving biological understanding from phenotype to the phenome

Mapping Dynamic Learn and Predict
Phenotypes measurements Molecular Networks
Integrate
. : : Model
Parts List Perturbations, an alteration of the function of a Hypothesize
biological system induced by

@ DNA
) RNA

— Molecular changes (DNA editing)
— Environmental changes
— Temporal changes

— Spatial changes (across cells, intracellular)

) MRNA splice isoform
) Protein expression

) Post Translational Modifications (PTM)
.

) Metabolome (Metabolites, Lipids, etc.)

J\m‘ Phenome (n). The set of all phenotypes expressed by a
%% cell, tissue, organ, organism, or species.



Currently Limited in our ability to Phenotype

_ Fundamental
e Level of Phenotyping # Targets  Throughput Sci. Unlocked

Level 1
Singular Network

Level 2 Small- Low-

Moderate
Competing Networks | Moderate Moderate

Acid

>

Level 3
Multiple Interacting
Networks

Dark Phenome




Currently Limited in our ability to Phenotype

Fundamental
Sci. Unlocked

n
Fast omics with high depth of coverage -
-
all- Low-
Moderate
-
— ~ ——'=

Level of Phenotyping # Targets = Throughput

Advanced computation approaches

)\ L. ML and Al L arue
L . anill

Level 4 Very Very
Dark Phenome Large Large
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Characterizing bacterial genes with large-scale
genetics

Adam Deutschbauer, LBNL and UC Berkeley
AMDeutschbauer@lbl.gov



Major Problem: Many genes of unknown function in bacterial
genomes

l . (blue) Computationally predicted function; no experimental evidence J

@ (black) No computationally predicted nor experimentally determined function

2,511,338
(76%‘)”"“ j 780,086 genes

(24%)

10,969 genes
(0.33%)

l . @ (green) Expenmental evidence for function

Anton et al. PLoS Biology 2013



Our approach: “High-throughput”
microbiology

* Mostly genetic approaches to
infer the function of genes from .
their phenotypes M

e We study many different = -
bacteria *

* Miniaturized and multiplexed
assays to drive down costs

e Convert different functional
assays to a next-generation
sequencing readout




Team science

IGMA https://enigma.lbl.gov/
ECOSYSTEMS & NETWORKS INTEGRATED

WITH GENES & MOLECULAR ASSEMBLIES

E

Persistence Control of Engineered
m-CAFEs Functions in Complex Soil Microbiomes

Science Focus Area: Pacific Northwest National Laboratory

https://mcafes.Ibl.gov/ https://genomicscience.energy.gov/pnnlbiosystemsdesign/

A universal pipeline for functionally characterizing
the human microbiota at a massive scale

An NIH-funded academic collaboration

https://gutworks.stanford.edu/



Outline

* RB-TnSeq for characterizing gene function in bacteria
* 6 challenges

* If | funded an effort on gene function discovery in
microbes



Functional genomics with
Tn-seq

A decade of advances in
transposon-insertion sequencing

Amy K. Cang '™, Lors Barguist 0, Andrew L Goodmon*”, Ion T Poulsen’,
Julign Porkhill0* and Tim von Opjneng "™

A Create TIS library
Aa Create random mutants
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X
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Host v (\ °. *’y .
gDNA S— lno,o Pl (-i- -

Measure phenotypes of most genes in the genome in parallel.
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Random barcode transposon site
sequencing (RB-TnSeq)

* Incorporate random 20bp DNA tags into the
transposons (DNA barcodes)

* Abundance of mutants in the population can
be measured by PCR and and sequencing the
DNA barcodes (BarSeq)

Mutant fitness assays i

BarSeq
U Time0 1 2.3
Barcode

Growth in selective media

Barcode
abundance

BC1 83
UU’ 1
“ BarSeq- 53
@ Condition & 3
1 2 3

Barcode

Gene fitness =
barcode abundance in Condition

log,

Rapid Quantification of Mutant Fitness in Diverse Bacteria by
Sequencing Randomly Bar-Coded Transposons

Eally ML Wetmare,* Morgen N Price® Sabert | Waters™ Jatoh 5 Lamatn,* Josmier e O A Hoswer ™ Matthew | Bow *
Sawers Biton * Carwin Batand * Adam P AU * Adam Devtuihbaer®

B BarSeq =
I : Ea s
— fagion |
E PCR barcodes, purify,
+ lllumina sequencing
v Index s2quencing SEQUENNG
peimer prioner
- 4 -
o u1lnzefu2|ns
~~— =/

barcode abundance in Time0 )

BarSeq is very easy and scalable. Just mix your
amplicons, run over single purification column in
10 minutes, and submit for Illumina sequencing

We use BarSeq (with same U1 and U2 priming

sites for):

= RB-TnSeq

= Lineage tracking in evolution studies (Tn7
insertions into neutral location)

= CRISPR interference

= Assessment of genetic systems (magic pools)
= Overexpression studies

= CRISPR-associated transposons




Genetics data for
many bacteria
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Expand # of strains

Expand # of

conditions

~5,000 genome-wide
RB-TnSeq assays
across 32 bacteria

Over 20 million gene-
phenotype
measurements

Phenotypes for over
10,000 genes without a
known function (many
are conserved across
different bacteria)

|dentify specific functions
for hundreds of mis-
annotated enzymes and
transporters

On a single lllumina X 10B flow cell, we can sequence 3,072 RB-TnSeq (BarSeq) samples

(~$3.50 per sample).




Challenge

1: Getting genetics up and

running in diverse bacteria

« Gram-positive bacteria are generally more challenging than Gram-negative
« But genetics with current tools often fails for Gram-negative bacteria as well

« Possible solutions: Testing libraries of genetic systems against a target

microbe in parallel, overcoming host defense systems, improved DNA

delivery methods

Test thousands of different vectors in parallel (magic pool)

Take advantage of:

DNA synthesis
Parts-based cloning
Long-read DNA
sequencing (PacBio
and Oxford
Nanopore)

Liu et al. mSystems 2018




Challenge 2: Propagating inferred gene
functions to new genes/genomes

» It's not straightforward getting genetics-based gene annotations into established databases
(like UniProt)

* Propagation of updated gene annotations to new genomes also isn’t straightforward

« Possible solutions: GapMind, better communication/integration between stakeholders

A. Example pathway

serA serC serB _
Lot B P serine
3-phosphoglycerate 3-phosphoserine phosphoserine
dehydrogenase transaminase phosphatase

B. Example step
serA is defined as: EC 1.1.1.95 or UniProt AOA1X9ZCD3
curated family 19 expenmentally-/ which we added
TIGR01327 characterized proteins because its mutants
2 s are auxotrophic
HMMER P

fl == ™Systems et By e oy
- ~ oy row >3 v ,--.'. e 1 wOUI9Y X

candidates

GapMind: Automated Annotation of Amino Acid
Blosynthesis

Morpan N Price (%, Adam M. Devtnchbaver * ™ Agam P Arkin**




Challenge #3: Pooled mutant fitness assays aren’t
ideal for non-growth based phenotypes

» Pooled fitness assays (like RB-ThSeq) are great for growth-based assays, like nutrient
conditions (C, N, S, P sources), stress conditions, etc.

« They’re not good for secondary metabolite discovery, secreted factors.

* Most genes do not have a strong phenotype under laboratory conditions

» Possible solutions: Assays using archived collections of individual mutants, new method
development to more systematically characterize gene function for other “categories” of
genes (like second metabolites)

A mutant fitness compendium in Bifidobacteria reveals molecular
determinants of colonization and host-microbe interactions

Aschony L Shiver. bawel Sun. Rebecca Cubver, Arvie Vicletne, Oharles Wiymter. Marta Neckarz
Samara Pauts Matmella, Prabiyee Kaur Seldhvon, Lisa Friess O Mams K Carlson, Darvel Worg
Seeven Higprdotom, Meredah Weglare Weggao Wang, Bergamn D Knapp, Ervrra Guberson, han Sancher.
Po-duen Huang, Pasio A Garcia, Cullen R Busie Berpprmn Good. Bvian Defelice, Felpe Cona oy Scara

Jsun Sonnenburg, Douwe Van Saderen Adam M. Dewtschbauer. Kerwyn Casey Huang

dolt Mpsidolong/10.1101/2023 08 29 555234

A  wiro v . i vivo
B85  Barcoded : 4 Bbr 0431 Bbr 1369  Bbr 1372  Bbr 1373
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Chal Ienge 4 Availability/cost of compounds

for chemical genomic screening

« Compounds of interest are often quite expensive, or not commercially available

» Possible solutions: Spend a lot of money, partner with chemists

o A Mmirogoenes-defned trefalose

. PO ot WA

Functional genetics of human gut commensal
Bacteroides thetaiotaomicron reveals metabolic
requirements for growth across environments
Hualan Liv,' ¥ Antinony L Shewer,” * Morgan N. Price,’ Hans K. Carfson, ' Valentine V. Teotter,” Yan Chen,

Veronica Escalante,’ Jayssivoe Ray,” Kelsoy E. Hern, " Chvistopher J. Petzokd, ' Poter J. Tumbaugh,
Kerwyn Casey Muang.”  * Adam P, Arkin,' " and Adam M. Deutschbauer
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Challenge #5: Large-scale functional
genomics typically requires isolates

of the gene space

« Many bacteria are currently uncultivated, so we're currently not assaying a significant fraction

« Possible solutions: Get more microbes into cultivation, Microbial community editing,
heterologous expression of DNA (random and via DNA synthesis) in diverse hosts

:>it{ll.l ART'CLES
microbiology g Y NI 52 PO

Species- and site-specific genome editing in
complex bacterial communities

Benjamin E. Rubin 0, Spencer Diamond 0™, Brady F. Cress 0™, Algxander Crits-Christoph®,
Yue Clare Lou™*, Adair L. Borges ©*, Haridha Shiviam™, Christine He 0%, Michael Xa O,

Zay' Thou 0, Sara 1. Smith'’, Rache! Roviesky'?, Dylan C. J. Smeck'’, Kimberly Tang 0%,
Trenton K, Owens®, Netravathi Krishnappa', Rohan Sachdeva 0, Rodolphe Barrangou & ',

Adam M. Deutschbauer = **, Mlian F. Banfield -\ 2% 5 and Jennifer A, Dowdag 0 e i

< Targened metabolic ennchment

New Retubes A Follow this preprint

Functional screens of barcoded expression libraries uncover new gene
functions in carbon utilization among gut Bacteroidales

Yolanda Y. Huang, 5 Morgan N. Price. ©0 Alison Hung, Omree GalOr 0 Davian Ho. Helose Canon,
Adam M. Deutschbaver, 0 Adam P Arion

dolz herpalidoioeg/ 10110172022 10,10.51 1384
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Challenge

6: Manual inference of gene

function from mutant phenotypes

It's still laborious to manually examine data to make new discoveries

Possible solutions: GapMind-like tools to quickly identity the “unknowns” in metabolism,

Al/machine learning

Protelnfer, deep neural networks for

protein functional inference
Theo Sanderson'’, Maxwell L Bleschi™, David Belanger’, Lucy J Colwell*'*

The Francis Crick Institute, London, United Kingdom, "Google Al, Boston, United
Staten. University of Cambridge, Cambridge, United Kingdom

Class outputs

Embedding

n resdual
convoiutonal
DIOCKS

One-hot

ot M| [E] [G] [E] [R] 8] [T] [C] [F

Neural network-based approach

SwissProt database used for training model

Enzyme function prediction using contrastive learning

Tianhso Yu'?4, Haiyang Cui®*}, Kanan Canal Li™, Yunan Luo®, Guangde Kang'?, Huimin Zhao'?*5+

A Some £C At
Deerant [ nunter
Poatve weguerce ADCIOE SCanCs - Negat e wgerce
e | B
v
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BN, NAXE, A
- v~ e N
YR o &S oy A
6es CRoXs) GO
A\d
Wamamice Brtonce Pontve Aot Vawmar Svianie Vegetve An it

« Contrastive learning-based approach

+ SwissProt database used for training model

For testing performance, both studies used >100 bacterial enzymes
that we annotated using RB-TnSeq data




ML methods work OK, but there’s room for improvement

Protelinfer, deep neural networks for

protein functional inference
Theo Sanderson'*", Maxwell L Bleschi™, David Belanger’, Lucy J Colwell*'*

The Francis Crick Institute, London, United Kingdom. "Google Al, Boston, United
Staten. University of Cambridge, Cambridge, United Kingdom

L}

ot
Mot Cales
Canect

0C Lovw 10 Le C Lowel 3 €C Laved 3

FC Lrwnd

Proportion of enzymes

» Accuracy of predictions
drops at finer levels of
classification

* Network fails to make
predictions at higher
resolution classifications

Enzyme function prediction using contrastive learning

Tianhso Yu'?74, Haiyang Cu?*;, Kanan Camal Li™, Yunan Lue®, Guangde Kang'?, Huimin Zhao'?* 5

Em CLEAN E3 DeepEC
Em BLASTp 3 DEEPre
§ =3 Proteinfer = ECPred
=]

0.5083
0.4671
0.4947

Benchmark score on Price-149

Precision Recall F1

« Performance is only marginally
better than BLASTp



If | were funding a large effort
to characterize bacterial
genes....

* |’'d fund a network of researchers to focus on bacterial gene function
discovery:

* Core teams with proven technology (tn-seq, rna-seq, small RNAs, (exo)metabolomics, proteomics, etc.)
would apply their methods at scale to thousands of diverse bacteria (would engage the community for
their favorite microbes and experimental conditions, and provide all genetic resources and data free of
cost and prior to publication)

* Additional funds would go to high-risk, high-reward technology development projects (Charge could be:
“Scale a technology that is informative about gene function in bacteria, such that it could be applied to
1000+ bacteria in 2 years”; perhaps protein-protein interactions, gene regulation, genetic epistasis,
structure-function studies, secondary metabolites). The successful tech would be blended into the
larger core program.

* And | wouldn’t spend much time mining existing data from literature (like old gene expression data with
microarrays), I'd just generate new data at a massive scale linked to accurate metadata, to ensure that

it’s “machine readable” for the community



wanglab.c2b2.columbia.edu
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Organism domestication is needed to study function at a
mechanistic level

human food

i a 10 Stenotrophomonas mltophila

soil water ﬂ% 3 :T— ; ':' S—
N taty sads i:,,,, OO %
NN BiOLOG

Organisms Genomics Models Phenotype

_ Systematic: record all info
Need strains

to do actual
experiments!

Comprehensive: get all strains (hard, but not impossible)

Cheap: minimizing labor costs/fatigue

Fast/on-demand: allow iterations
Culturomics



Strain de-duplication through cultivation help fight against the
“tragedy of the common” in microbiome research

Relative abundance
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A universal problem in
* Metagenomics
» Metatranscriptomics

« Community metabolomics
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Culturomics by Automated Microbiome Imaging and [solation
(CAMII) System

Huang et al, Nature Biotechnology 41:1424-33 (2023)

One ofithe most aq%]vironmentally
controlled microbial cultrwation system

— \ ﬂ\



Extensively explored different media formulations and growth

conditions

fecal samples

20x plates/sample

100+ growth conditions:
media, dietary, abx, rumen,

vitamins, menaquinones, etc.
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Using Al to predict microbial taxonomy directly from colonies

Colony detection & segmentation
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Colony morphological features

Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)




Building the largest microbiome biobanks from unique sources

>32,000 strains in biobank to date
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microbial-culturomics.com



http://microbial-culturomics.com/

A searchable and open database to share data & biobank

g : o , ® :
o B 5
< = Y .

Summary of biobanks Search by Isolate Search by Taxonomy Search by Morphology
== == (v e=n

http://microbial-culturomics.com/

Summary of biobanks

Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)



http://microbial-culturomics.com/

Towards illuminating the dark matter of the gut microbiome
through systematic culturomics

Relative abundance in bulk feces Isolates in personalized biobanks
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Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)




Spatial growth patterns of bacteria on plates provide rich data to
delineate species interactions

Species interactions

B. adolescentis  C. qucibialis

negative interaction positive interaction no interaction
_'®! 8. vulgatus, OTUS £ ol F oTus? &/ B. longum, OTU3 |
g g : § |

§3o = e [ _
5 N é é é 3 éB:’ 5 improved growth
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Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)




Prevalence and function of most widespread HGT elements
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Huang et al, Nature Biotechnology doi: 10.1038/s41587-023-01674-2 (2023)
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Mechanism of resistance
@ antibiotic efflux

© antibiotic inactivat

@ antibiotic target alteration
© antibiotic target protection
@ nmultiple mechanisms

Type-lll secretion system
Partial I Complete

Type-lV secretion system
Partial [l Complete



High-throughput transcriptomics to study drug-microbiota

Interactions
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400+ drug-microbe combos

“ -
SoldA €

H1 isolates

ATCC

Bacteroides doreii

Collinsella aerofaciens

Dorea longicatena

Alistepes shahii
Bifidobacterium adolescentis
Parabacteroides distatonis
Eubacterium rectale
Bacteroides stercoris
Bacteroides uniformis
Bacteroides fragilis
Bacteroides vulgatus
Bifidobacterium longum
Fuscatinebacter sacchivorans
Escherichia coli

Bacteroides vulgatus
Bacteroides uniformis
Bacteroides fragilis
Fuscatinebacter sacchivorans
Eubacterium rectale

Lisinopril, ACE inhibitor

Lenalidomide, Chemotherapy
Metformin, Anti—-hyperglycemic

Amlodipine, CCI

Venlafaxine, SSRI, SNRI or NDRI
Bupropion, SSRI, SNRI or NDRY]
Trazodone, SSRI, SNRI or NDRI™
Escitalopram, SSRI, SNRI or NDRI
Amitriptyline, SSRI, SNRI or NDRI
Citalopram, SSRI, SNRI or NDRI
Sertraline, SSRI, SNRI or NDRI
Paroxetine, SSRI, SNRI or NDRI
Duloxetine, SSRI, SNRI or NDRI
Fluoxetine, SSRI, SNRI or NDRI
Atorvastatin, Statin

Simvastatin, Statin

Ricaurte, Huang, et al, Nature Microbiology (accepted, 2023)
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Huang, NAR, doi: 10.1093/nar/gkz1169 (2019)
Shishkin, Nature Methods, 12(4):323-5 (2015)



Bacteria produce robust transcriptional responses to top drugs
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Ricaurte, Huang, et al, Nature Microbiology (accepted, 2023)



Two-component
regulatory system

polyol, and

lipid transport system

Other amino acid metabolism: GABA shunt |

Energy-coupling factor transport system |

and efflux pump

Cofactor and
vitamin i

Bacitracin transport system

regulatory system

Saccharide, polyol, and
lipid transport system

Proteins

Phosphotransferase

Ribosomal ‘
transport system ‘

Oligopeptide transport system

'sugar bit

Multidrug resistance and efflux pump

Cofactor and vitamin

|

|

|

|
ABC-2 type and other
transport systems

MO00657
M00656
M00490
M00603
MO00196
M00214
M00178
M00027
M00582
M00652
M00643
M00642
M00718
M00728
M00821
M00822
MO00768
M00699
M00646
M00647
MO00125
M00123

MO00747

M00657
M00207
MO00603
M00196
MO00214
M00178
M00179
M00267
M00764
M00439
M00554
M00652
MO00125
M00258
M00298
M00747

M00254

FDR (-log10)
@2
®:
[ !
{ E

Enrichment (log2FC)
Up: D
75 75
5.0 5.0
25 25
0.0 0.0

Human-targeted drugs promote
antibiotic resistance responses

Enriched Pathways

TC.HAE1, transporter (K03296)

acrA, multidrug efflux pump (K03585) -
HSP20, HSP20 family (K13993)

mexK, multidrug efflux pump (K18303) 4
oprM, multidrug efflux system (K18139) 4
berB, bacitracin transport (K19310)
ABCB-BAC, transporter (K06147) 4

2ZntA, Zn2+/Cd2+-exporting ATPase (K01534)
degP, htrA, serine protease (K04771) 4
ttdA, tartrate dehydratase (K03779) 4

1tdB, tartrate dehydratase (K03780)
TGFBI, signaling (K19519) 4

GAD, glutamate decarboxylase (K01580) 4
dnaK, chaperone (K04043) 4

KO term

nemR, transcriptional regulator (K16137) 4

IpxA, lipopolysaccharide biosynthesis (K00677) 4
vanRC, two-component system (K18349)
vanSC, two-component system (K18350)
otsA, trehalose 6-phosphate synthase (K00697) 4
iron-regulated protein (K07231) 4

esxA, NA (K14956)

IplA, aldouronate transport system (K17318)
ABC-2.P, ABC transport system (K01992) 4
ABC.CD.A, ABC transport system (K02003)
gfrC, PTS system (K19508) 4

ABC-2.A, ABC transport system (K01990) 4
berB, bacitracin transport (K19310)

ABC.CD.P, ABC transport system (K02004) 4
ABC.CD.TX, NA (K02005) 4

Transport

Multi-drug resistance
* Two-component
systems

Regulation
Up

Down

Ricaurte, Huang, et al, Nature Microbiology (accepted, 2023)
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H1
B. fragilis
ATCC

H1

B. uniformis
ATCC
H1

P. vulgatus
ATCC

B. stercoris H1
P. dorei H1

P. distasonis H1

A. shahii H1

acrA acr8
AcrA AcrB inner
periplasmic
protein protein

Ricaurte, Huang, et al, Nature Microbiology (accepted, 2023)

Example: Statin-induced host-factor toxicity
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Need more organized systematic data to train next gen models:
transcriptomics, metabolomic, phenomic, imaging

TABLE 191, Characteristics of species of the genus Ruminococour
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Dream slide: culturomics + phenotypic/transcriptomic analysis
with large-scale perturbations
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culturomics genomics transcriptomics metabolomics/phenomics
| | “The Stimulator”
X 10,000s of perturbations | * Each well is addressable
- metabolites * Leverage spatial omics
- xenobiotics High-density . Capture_ kinetic data
- other supernatants “perturbations arrays” * Can train large Al models
- growth conditions w/ 10k-100k Strain 3
- genetic KO/activation perturbations —_Strain 2

[ Strain 1
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GINKGO
BIOWORKS

ldentification and prioritization of biosynthetic
gene clusters for commercial (meta-)genome
mining

Zachary Charlop-Powers

R&D Director, Ginkgo Bioworks
December 12, 2023

Property of Ginkgo Bioworks
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Genomics aided host and strain
engineering for biotechnology

Aindrila Mukhopadhyay
Senior Scientist
Biological Systems and Engineering Division

Lawrence Berkeley National Laboratory

Dec 12t 2023
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Many carbon sources can be used across a range of
host systems form conversion to many targets
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Bioproduct case study: sustainable

materials for dyes and pigments

https://aecom.com/blog/la-denim-city-2
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Microbes with versatile catabolism can be engineered
for such final products but scale up is challenging
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Scaled-up production using hydrolysate

https://www.tmmedia.in/ ‘

Milled biomass Mixing efore pretreatment After pretreatment

Sundstrom et al 2017 Green Chem
Enzymatic hydrolysis, 3 h



Development of the optimal host..

consume many

biomass components Engineer pathway to final

products or precursors

tolerate biomass
hydrolysates

Flux to key intermediate
or product

p,

tolerate intermediates maintain the right
and final products metabolism and

fitness




Functional genomics approaches can reveal

bvi targets
Mutant fitness profiling Muiti-omics
— | —inge =" im
- Ovivaton under ,,‘:’f’:. """"""" motecm Vst ane
e -y
s
\ /
»
Metagenomics o Adaptive laboratory evolution
/ ~ \ <5 o™
v bl ] —~ |
o% — il ~
Metageror e -

Ly

tools

» » » »

|dentification of key genes with
known functions

Role of non-metabolic genes
and proteins

New roles for known genes
and proteins

Genes with unknown functions

Roles of regulators and
signaling systems

Kulakowski et al 2023 COBIOT



Functional genomics and systems biology as
approaches to identify new gene targets

Parallel Screening in Bioreactors
100,000 Transposon Mutants
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e 3 APP_4129 Anuol
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o—

APP 1656 ArelA
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Eng, Banerjee, et al., (2020) Met Eng.




Development of the optimal host..

consume many

biomass components Engineer pathway to final

prod ucts or precursors

tolerate biomass
hydrolysates

or product

R % Flux to key intermediate

tolerate intermediates maintain the right
and final products metabolism and
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Systems biology driven metabolic rewiring for
growth coupling
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> Banerjee, Eng, et al., (2020) Nat Comm.



iterative approaches using systems biology
and functional genomics
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Discovery of new parts to enable genetic
tractability

Oakridge Field Research Center

Isolation of mobile genetic elements from ground water samples
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Discovery of new parts to enable genetic

tractability

Environmental Bacteria

Sample A

Sample_B
Sample_C
Sample_D
Sample_E
Sample_F
Sample_G

w301
FW300
W0
GW4s0
FW301
GW456

GW460

12/1/14
11/11/14
127114
12/4/14
12/1/14
1114

12/1/14

4| water filtered
through 0.2 and
10uM filters

Kothari et al (2019) mBio



Discovery of plasmid from the Oakridge FRC

10000
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Common
Sample F
1000
@
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Plasmid size (kb)

« 1.7Mb plasmid, among largest ever found in a

plasmidome studies
« 11 plasmids more than 50 kb in size

Plasmid distribution based on size and types
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Tace
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» Seven different incompatibility groups
were identified

Sample_G

Sample_F

Kothari et al (2019) mBio



Plasmids provide the first step to

transformation and genetics

most ubiquitous p
tested across several isolates
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Discovery of new origins

to create new Synbio parts

612 plasmids discovered

L”l 9 novel predicted origins

21 literature origins

9 promoters

2 kanamycin resistance markers

Magic pools library
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Transform non-model microbes

Origin validation

Kothari et al (2019) mBio
Codik et al (2023) in prep



Applications of new gene functions
PP egrgdatlon of harmful substrates — toxins,

explosives, biocidal agents

Conversion to valuable materials —
biomanufacturing, therapeutics, chemicals,
materials, fuels

Biosensor development — dynamic systems,
diagnostics, tracking and measuring

Discover fithess targets — therapeutics
Precision synthetic communities, Ag
application, probiotics, complex manufacturing
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Integrative, multiscale
modeling of cellular systems

Eran Agmon, PhD
Assistant Professor | University of Connecticut Health
DARPA Discovering Unknown Function Workshop | 12/12/2023



“a computer model is feasible, and every experiment that
can be carried out in the laboratory can also be carried out
on the computer. The extent to which these match
measures the completeness of the paradigm of molecular
biology.”

— Harold Morowitz 1984




A short history of whole-cell modeling

1984: first efforts to

2007: Genome-scale 2013: Lattice

metabolic model of E.

model E. coli 1999: E-cell: a coli with 1260 ORFs and stochastic

pathways with ODEs gene-based model thermodynamic

(Domach et al.) (Tomita et al.) constraints (Feist et al.) (Robertsetal.)

Microbes: Spatial

simulation of E. coli

2022: Structural model
of whole Mycoplasma
(Maritan et al.)

2022: Dynamic model of
JCVI-syn3A (Thornburg
et aI.)I

1973: Francis Crick
and Sydney Brenner
write about

“the complete
solution of E. coli"

1984: Harold 1999: The Virtual
Morowitz advocates Cell (Schaff & Loew)
for a model of

Mycoplasma

2012: whole-cell
model of Mycoplasma
(Karr et al.)

>
|

2020: large-scale
mechanistic model of
E. coli (Macklin et al.
2020)




Independent Heterogeneous Data

Cell mass
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“Whole-cell” model of E. coli

Combines a massive, heterogeneous set of measurements
reported in E. coli in thousands of studies across hundred of
laboratories over the past decades. >19,000 parameter values
curated from this set.

Linking these data via mechanistic models provides the most
natural interpretation of the integrated dataset. >10,000

equations.

While all genes are expressed in the model, only 1214 of them are
given a function (43% of annotated genes in EcoCyc). Mostly
metabolic genes.

Simulated in three environments: minimal medium (M9 salts plus
glucose), rich medium (with added amino acids), and a minimal
anaerobic medium.

Macklin, D.N., Ahn-Horst, T.A., Choi, H., Ruggero, N.A., Carrera, J., Mason, J.C.,
Agmon, E., ... & Covert, M.W. (2020). Simultaneous cross-evaluation of
heterogeneous E. coli datasets via mechanistic simulation. Science, 369(6502)



Can we leverage modular software design
to integrate heterogeneous data types and
models of cellular/molecular functions?




Vivarium: an "interface protocol” for connecting heterogeneous models,

algorithms, and data into a hierarchical network that represents
distributed, interacting processes.

* Processes: consist of parameters, ports, and an update function.
* Stores: hold the state variables, map the variable names to their values, and apply the updates.
 Composites: bundles of processes and stores, wired together by their ports, and run together in time.
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Vivarium-Ecol,

* Re-created as 12 composable processes
e functions for 1214 (43%) of well-characterized genes

e >19,000 parameter values
* >10,000 mathematical equations

* https://github.com/CovertLab/vivarium-ecoli
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434

reproduces model from Macklin, et al. "Simultaneous cross-evaluation

of heterogeneous E. coli datasets via mechanistic
simulation." Science (2020)
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heterogeneous gene expression

growth on glucose AmpC AcrAB-TolC

Skalnik, Cheah, Yang, et al. Whole-cell modeling of E. coli colonies enables quantification
of single-cell heterogeneity in antibiotic responses. PLoS Computational Biology. (2023)



Adding function:
from flagella expression to behavior

0 7 Flagella
1s O
>
Os 15000 s

Agmon, E., & Spangler, R. K. (2020). A multi-scale approach to modeling E. coli chemotaxis. Entropy.
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Adding function:
from flagella expression to behavior
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Adding function: response to antibiotics

Macklin et al. 2020
1214 Genes
> 19,000 Parameters
> 10,000 Equations

Whole-Cell Model
(now in Vivarium)

Proteins Tetracycine
Chromosome MRNAS X g
4 “ A ) -
Repication Transcription Degradation Translation Metabolism
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To population model |

Response to Tetracycline

Transport | |

New Components:
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Skalnik, Cheah, Yang, et al. Whole-cell modeling of E. coli colonies enables quantification of single-cell heterogeneity in antibiotic responses. PLoS Computational Biology. (2023)
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Simulating colony response to antibiotics

Skalnik, Cheah, Yang, et al. Whole-cell modeling of E. coli colonies enables quantification of single-cell heterogeneity in antibiotic responses. PLoS Computational Biology. (2023)



What needs to happen next

To represent all the molecular processes in a cell we need to integrate heterogeneous data. Ideally, each of the following can be
experimentally determined, but may require inference algorithms to fill missing knowledge:

sequence of each chromosome, RNA, and protein; the location of each chromosomal feature including each gene, operon, promoter, and
terminator; and the location of each site on each RNA and protein.

structure of each molecule, the domains and sites of macromolecules, and the subunit composition of complexes.

subcellular organization of cells into organelles and microdomains.

participants and effect of each molecular interaction, including the molecules that are consumed, produced, and transported, the
molecular sites that are modified, and the bonds that are broken and formed.

kinetic parameters of each interaction.
concentration of each species in each organelle and microdomain.

concentration of each species in the extracellular environment.

To connect a cell’s molecular composition with its behavior and function, we need:

function/process curation pipelines, expanding upon the processes developed for vivarium-ecoli. This include modules for metabolism, TF
binding, transcription, translation, chromosome replication, degradation, signal transduction, and more are required.

whole-cell models made of these processes need to be calibrated with molecular data acquired across heterogeneous cell populations, in
different environments, and with different experimental perturbations.



Thank Youl!
UCONN

Vivarium-Lab: Amin Boroomand (UConn Health, WHOI), Isha Mendiratta (UConn HEALTH
Storrs), Edwin Appiah (UConn Health), Jayde Schlesener (UConn Health, WHOI)
Vivarium-Core: Ryan Spangler (Altos Labs), Chris Skalnik (MIT), William Poole (Altos W

Labs), Jerry Morrison (Stanford), Shayn Peirce-Cottler (UVA), Markus Covert
(Stanford). Vivarium-Ecoli: Chris Skalnik (Stanford), Michael Yang (Stanford), Sean
Cheah (Stanford), Matt Wolff (Stanford). BioSimulators: Jonathan Karr (Formic
Labs), lon Moraru (UConn Health), Alex Patrie (UConn Health), Logan Drescher

(UConn Health), Jim Schaff (UConn Health), Herbert Sauro (University of CENTER FOR
Washington). Vivarium-Mechanobiology: Blair Lyons (Allen Institute for Cell CHEMICAL CURRENG'ES
Science), Jessica Yu (Allen Institute for Cell Science), Saurabh Mogre (Allen Institute OF AMICROBIAL PLANET

for Cell Science), Karthik Vegesna (Allen Institute for Cell Science), Matt Akamatsu
(University of Washington) ) o = @

Contact: agmon@uchc.edu
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Unknown Protein Function in Whole-Cell Modeling

Christopher J. Bettinger, Ph.D.
Biological Technologies Office (BTO)
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D’ﬁRPA What is Whole-Cell Modeling? [ WM ~ Whole-cell model

]

WCM: A computer simulation that predicts phenotypes from genotype, including all molecular

species and each molecular interaction.

Molecular
structures

Am T

Physical and chemical representation

Predicted phenotypes

Whole-cell model

Impact: A practical whole-cell model uses genotype to (a) predict disease, (b) anticipate
pathogenicity, (c) accelerate design-build-test-learn cycles in synthetic biology.

Distribution Statement “A”

Goldberg, et al. Curr Opin Biotechnol. 2018 (Approved for Public Release. Distribution Unlimited).
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Overall landscape of models to describe cell behavior

|

MD - Molecular
dynamics

]

SoA: Models of cells are either: (a) physically accurate; (b) scalable, but not both!
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DPA Whole-cell modeling provides a useful conceptual frame [

modeling

WCM - Whole-cell ]

Whole-cell modeling SoA: Solve large systems of ODE across many cell “modules” to
gain a comprehensive chemical-physical representation of the cell.

WCM 4 Cryo-electron microscopy to
Tools Image proteins
\ 2. Experimental —omics data
/\ 3. High-performance computing
WCM _ o
Demo WCM simulate doubling time
0 _ & metabolism for one
o division of a synthetic cell®

Capability Gap: Unable to handle large complexity
Knowledge Gap: Unannotated proteins & sparse data

. Distribution Statement “A”
aSynthetic cell composed of 493 genes (543 kbp genome)

1

Cellular Processes - R, D

Proteomics
Metabolomics

Initial Cell State - x,

Whole-Cell Simulations
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Thornberg, et al. Cell. 2022
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DPA What are "DARPA"-hard roadblocks to biological modeling of cells?

Impact: An interpretable physics-based model of £. coli could predict evolution and
accelerate synthetic biology research but there are challenges...

L —

|

Complexity Sparse Data
/ _ — \ / ~35% of proteins\
A W i in £. coli have
' unknown function

493 genes (mycoplasma) /\E =
10X =) (=
~— N~

\4000 genes (£. col)) / K Metabolic network J

Karr, et al. Cell. 2012 Distribution Statement “A”

(Aporoved for Public Release. Distribution Unlimited).

Noise
/ RNA expression in 8 runs
*

Average mRNA Count

g |
o L g L - LA . L2 Ll
00 2% S0 75 100 125 150
mRNA Half Life (min)

Thornberg, et al. Cell. 2022




UNCLASSIFIED

DPA Leveraging modeling and automated “cloud labs” for WCM

Model & Predict
e Technical Challenges

s Complexity: Solve high-dimensional systems of equations;
Incorporating features to model cell-cell interactions

Develop WCMs for complex % Sparse Data: Getting values for initial state and parameters
organisms & multi-organism “* Noise: Models need to be robust and tolerate noise

communities

Measure & Verify

76 Technical Challenges
QX s Automating large-scale experiments
ol i \ +* Handling of noisy and stochastic data from small sample sizes
"__ | +* Human “out-of-the-loop” experimentation
Collect ground-truth data to ¢ Being able to handle and curate heterogeneous data /
inform & validate models

Experiments and modeling exercises run concurrently — models & data help inform each other.

Interest: WCM software that can predict the behavior of microbial communities.




DPA What are the computational tools available for WCM? [

UNCLASSIFIED

NN — Neural network

PDE - Partial differential equations

]

Recent innovations in neural networks allow: (@) handling of sparse datasets; (b)

descriptions of more complex systems with fewer “neurons”

Innovation Impact Implication for WCM
Phys|cs- Can solve Iargg systems. of PDE with spa”rse data Ey using & Can solve high-dimensional
informed governing equations to connect “neurons :
Neural Networks PR P Physical Laves systems of PDE using sparse
Automatic Differentiation Gowverning equations d t t
®. ¢ _ ata sets
(2019) N o ireram L S
B\ O Jode emge i % |deal for modeling biological
x Y ! RS e LN AN 2 2 3 .- H ] ] ]
027® /O |t OR® B 1 W s cnsrin systems where data is limited
/\'. ; Nk NSNE Tw wix, 1) = By(x.1).x € Oy, € [0.7]
x ¢ - ™ nTeln) =B drnxedngreom
\./ ./ . & )= Jyix)xe =0

Raissi, et al. J
Comp Phys. 2019

wirt) w (g zeit =

Data Loss Function: [, (¢ Physics Loss Function: [, ($§

“Liquid”
Neural

Networks
(2022)

Hasani, et al. Nat Art
Intelligence. 2012

Neural networks are s ) e S g :
simplified by connecting e » @ A
fewer “neurons” w/ ' o ® ® :
non-linear equations ln @ A,
(opposed to scalars) s PR e |
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¢ Improves scaling ~10,000x

¢ Standard: 100,000 “neurons”
¢ Liquid: 19 “neurons”

i+ Fewer “neurons” makes networks

more interpretable
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