

Ocean of Things: Low-cost Distributed Sensing with Scalable Analysis for Maritime Situational Awareness

The military, commercial, and scientific communities desire additional understanding of their environment. Ocean of Things provides **persistent**, wide-area, multi-modal coverage through large scale employment of floats.

Ocean of Things Coverage

- Each float operates for > 1-year using widely available components
- Object and sensor motion allow for the collection of physical and activity-based information
- Multi-sensor fusion and machine learning techniques used to characterize maritime tracks
- Ocean of Things supports multiple missions with its heterogeneous capabilities

Affordably increasing maritime capability and coverage

DARPA PROCESS: Collect float data to understand ocean activity & environment

	Ocean of Things Activity	Outputs	Data Products	HydrophoneRadio
5	Measure	 Periodic scalar sensor data Float locations 	 Fine resolution environmental data Ocean of Things system performance 	Mission Sensor Microphone
TA	Report	 Episodic event declarations via Iridium 	 Activity cueing Anomaly reports Unique bell-ringer signatures 	GPS Accelerometer Temperature
-2	Fuse	 Track reports 	 Vessel tracks to common tactical plot Data confidence values 	Data
ΤA	Classify	 Contact signatures Platform ID Behavioral norms 	 Object/vessel behaviors Intelligence reporting Indications and warnings 	CMD Center

Float Hardware

Phase 1 Onboard Sensors:

- Sea Surface Temperature
- GPS Position
- Inertial Measurement Unit (IMU)
- AIS Receiver
- Surface Pressure
- Relative Humidity
- Cloud Cover
- Software Defined Radio (SDR)
- Microphone
- Hydrophone
- Conductivity

Edge processing includes detection algorithms for numerous events that could potentially correlate to tracks:

- Marine mammals and biologic activity
- Vessel activity
- Anomalies

Priority based queues manage report transmissions:

- Periodic based timelines (e.g., planned health and status)
- Event based reports (e.g., detection above a threshold)
- Queue created and re-prioritized based on observed activity

Transmission size is limited. Working with Float Hardware Performers on efficient transmission management will contribute to improved energy use by the floats while providing valuable, timely data.

Ocean of Things – Data Overview

Dr. Jeff Ellen Naval Information Warfare Center (NIWC) - Pacific Phase 2 Proposer's Day – April 7, 2020

jeffrey.ellen@navy.mil

Distribution A: Approved for public release, Distribution Unlimited

▼ Ocean of Things (OoT) Data flow overview

- Float Report Generation
- Float Command Sequence
- ▼ Data/Software Responsibilities
- Resources + Access
- ▼ Software Build Process
- ▼ Phase 1 Lessons Learned
- ▼ Summary

Float Report Generation

- 1. Raw data recorded by TA1 float sensors
- 2. Data condensed to reports by TA1 float encoder
 - Clever byte packing, summarization, smoothing, etc.
- 3. Bytes sent as Iridium Mobile Originated (MO) message
- 4. Bytes sent via TCP to NIWC's OoT Cloud by Iridium/DISA
- 5. Bytes unpacked/logged/archived by OoT Gov switchboard
- 6. Bytes decoded by TA1-provided REST endpoint
 - Rich Representation Avro + JSON
- 7. Avro posted to Apache Kafka pub/sub streaming pipeline by OoT Gov switchboard
- 8. Reports consumed by <u>TA2 Clients</u>

PACIFIC

Float Command Sequence

- 1. Avro command posted to Kafka pipeline by TA2 Client
- 2. Command consumed by OoT Gov Switchboard
- 3. Command encoded (as bytes) by TA1-provided REST endpoint
- 4. Bytes sent via TCP to Iridium/DISA by NIWC's OoT Cloud
- 5. Bytes queued as Iridium Mobile Terminated (MT) message
- 6. Float checks inbox after sending MO message
- 7. Bytes downloaded as MT message by float modem
- 8. MT message decoded by TA1 float decoder
- 9. Action(s) taken by TA1 float logic to follow command

Data/Software Responsibilities

TA1

- Provide encoder / decoder for float messages
- Provide documentation
- Optimize useful data

 Host infrastructure

NIWC 💙

- ▼ Provide Access
- Decide formats
- Serve Kafka + Avro
- Verify decoder
- Generate quality test data

TA2

- ▼ Use Cloud
- Leverage
 DevOps
- ▼ Consume Kafka
- ▼ Follow Schema
- Inform TA1s (report utility)
- Deliver novel data 'products'

▼ NRDE (Naval R&D Environment) - GovCloud

- DoD Authorized Amazon Web Services
- ▼ Similar to public offerings, but US Hosted, security compliant etc.
- Entire OoT infrastructure is hosted on AWS
 - Primarily EC2 instances
- ▼ Potential for higher levels of security than UNCLASS
- Metered access Paid directly by DARPA

- SkyDesk Customized Citrix for access to NIWC network
- ▼ Can originate from Windows, MacOS, Linux
- ▼ Endpoint is Windows 10 instance hosted on GovCloud
- ▼ CAC card required
 - # of CAC per team limited by security principles
 - Long Lead Time reissued not transferred choose wisely
- Monthly fee paid by DARPA

- ▼ Monitor low-level comms of groups of floats
- Actively developed/supported by NSWC Dahlgren

OoT Float Status	Status	Comms Timeline	Comms Counts	Comms Stats							
Assignment		Float status (all)			Float status	(Arete only)		Float status (Numu	rus only)	Floa	
arete_numurus_dynam	c_2_dਵc										
Time Window			Alo	<pre>deployed not_deployed</pre>		000	<pre>deployed not_deployed</pre>			<pre>deployed not_deployed</pre>	
Last 24 hours	•		3%						2%		
			10.						10.		
		Float table									
		Status:	Status:								
		✓ command_sc	uttled 🗷 deploye	ed 🗹 not_deploye	ed 🗹 scuttled	🕑 scuttled_in_air 🛛	🛿 unknown				
		Vendor:									
		🗹 arete 🗹 nui	murus 🗹 parc 🗹	usna							
		Show 100 • en	ntries								
		imei	\$	vendor	status	type	♦ last_con	nms 🎍	last_posn		
		1 300234	068818010	numurus	not_deployed	CAMERA	2019-12-1	7 22:09:22	lat: 32.626331 , lon	n: -117.90898 , at 2019-12-17	
		2 300234	068813200	numurus	deployed	CAMERA	2019-12-2	0 18:14:29	lat: 32.7877 , lon: -:	118.021286 , at 2019-12-20 1	
		3 300234	068729590	numurus	not_deployed	CAMERA	2019-12-1	7 22:13:18	lat: 32.625576 , lon	n: -117.90593 , at 2019-12-17	
		4 300234	068729140	numurus	deployed	RADIO	2019-12-1	8 15:54:52	lat: 32.634586 , lon	n: -117.844108 , at 2019-12-1	

- ▼ Verify float connectivity
- ▼ Ascertain status of tests + deployments

DoT Float Status Status	Comms Timeline Comms Counts Comms Stats
ssignment	
arete_numurus_dynamic_2_dæc	mo_and_mt
me Window	300234067566650 [A] • • • • • • • • • • • • • • • • • • •
Last 24 hours 🔹	300234067567610 [A]
	300234067568670 [A]
	300234067665850 [A]
	300234067666980 [A]
	300234067667970 [A]
	300234067667980 [A]
	300234067760440 [A]
	300234067760450 [A]
	300234067761430 [A]
	300234067762450 [A]
	300234067764410 [A]
	300234067765440 [A]
	300234067766450 [A]
	300234067767440 [A]
	300234067768430 [A]
	300234067860130 [A]
	200224067062220 [A]

Provides detailed information recent float comms
 Provides last #N messages for individual floats + OoT-wide

Float quicklook Floats	SBD	Common MO Ve	ndor MO Co	ommands Rece	nt activity				
Current selection	oot.s	bd.mo_data oot.s	bd.mt_outgoing	test-oot.sbd.mt_	outgoing oot.sbd.r	nt_status			
Floats page.)		_imei (_vendor 🗄	_timestamp \\$	imei	mo_msn 🗄	mt_msn ≑	status 🍦	
MEI: 300234067760450 /endor: arete	1	300234067760450	arete	2019-12- 23T09:11:56Z	300234067760450	518	0	success	////BZDvQANCJdHrwgFTY3V0dG
Status: deployed Last SBD Transaction:	2	300234067760450	arete	2019-12- 23T09:11:33Z	300234067760450	517	0	location_unacceptable	DQ8JDAkFkAClOgNCENDrwqcrX
2019-12-23 09:11:56	3	300234067760450	arete	2019-12- 23T08:40:40Z	300234067760450	516	0	success	Cw4HDA4FkAC/NANCEM/rwqcH
Data Valid Time: 2020-01-15 18:06:52 UTC	4	300234067760450	arete	2019-12- 23T08:26:07Z	300234067760450	515	0	success	Cg0HCw0FkADxMQNCmc7rwqd4
Jser specified time	5	300234067760450	arete	2019-12- 23T08:10:14Z	300234067760450	514	0	success	CQwHCg4FkAAkLwNCKs7rwqcZ
	6	300234067760450	arete	2019-12- 23T07:23:14Z	300234067760450	513	0	success	BhULEgwFkAAjJwNC7czrwqfyYF
	7	300234067760450	arete	2019-12- 23T07:08:19Z	300234067760450	513	0	rf_link_lost	
	8	300234067760450	arete	2019-12- 23T06:36:55Z	300234067760450	512	0	success	Aw8IDA0FkAAfIANCb8vrwqcFYLł
	9	300234067760450	arete	2019-12- 23T06:06:19Z	300234067760450	511	0	success	AQwHCRAFkACOGwNC/8nrwqf8
	10	300234067760450	arete	2019-12- 23T05:50:26Z	300234067760450	510	0	success	AAsHCRAFkABAGQNCgMnrwqdJ
	Show	ving 1 to 10 of 10 entr	ies						

Provides human-readable decoded messages Allows browsing of key topics by IMEI

oat quicklook Floats S	SBD	Common MO Ver	ndor MO Co	ommands Rece	nt activit	у					
urrent selection	data	status config									
used on current selection from oots page.)		_imei \$	_vendor	_timestamp 🕴	id	imei 🍦	uptime	heading	float_id 🛊	hd_usage ≑	latitude 🎙
El: 300234068813200 ndor: numurus	1	300234068813200	numurus	2019-12- 20T14:55:09Z	35895	300234068813200	1 day to 3 days	230.69	980	less than 50%	32.7877
itus: deployed	2	300234068813200	numurus	2019-12- 20T13:48:40Z	35874	300234068813200	1 day to 3 days	39.9	980	less than 50%	32.779834
9-12-20 18:14:40	3	300234068813200	numurus	2019-12- 20T11:33:21Z	35823	300234068813200	1 day to 3 days	256.1	980	less than 50%	32.76939
ta Valid Time: 20-01-15 18:06:52 UTC	4	300234068813200	numurus	2019-12- 20T09:23:14Z	35786	300234068813200	1 day to 3 days	254	980	less than 50%	32.760997
er specified time	5	300234068813200	numurus	2019-12- 20T08:51:28Z	35766	300234068813200	1 day to 3 days	237.1	980	less than 50%	32.759647
	6	300234068813200	numurus	2019-12- 20T07:46:14Z	35741	300234068813200	1 day to 3 days	290.79	980	less than 50%	32.756332
	7	300234068813200	numurus	2019-12- 20T07:14:36Z	35722	300234068813200	1 day to 3 days	202.8	980	less than 50%	32.754283
	8	300234068813200	numurus	2019-12- 20T05:30:55Z	35689	300234068813200	1 day to 3 days	232.1	980	less than 50%	32.749935
	9	300234068813200	numurus	2019-12- 20T02:16:51Z	35593	300234068813200	1 day to 3 days	0	980	less than 50%	32.741878
	10	300234068813200	numurus	2019-12- 20T00:33:42Z	35474	300234068813200	1 day to 3 days	144.89	980	less than 50%	32.736366
	Show	ring 1 to 10 of 10 entri	es								

- ▼ Kafka cluster provides incoming message traffic
- ▼ Avro schemas create commonality across report types
- ▼ Kafka also provides TA2 ← → TA2 exchange
- Provide documentation for outgoing float commands
- Provide documentation for accessing raw float data (via wifi)

	t.reports.health_and_status EMAID: 817	VERSION 9 -
SCHEMA	INFO CONFIG HISTORY	𝗭 EDIT
1 - 7		
2	"type": "record".	<u>^</u>
3	"name": "Health And Status".	
4	"namespace": "mil.navy.spawar.sd.oot".	
5	"doc": "Top level health and status message for all OoT floats".	
6 -	"fields": [
7 -	{	
8	"name": "cdr_reference",	
9	"type": "long",	
10	"doc": "Call Detail Record - Unique Identifier for the source MO SBD message"	
11	},	
12 -		
13	"name": "headers",	
14 -	"type": {	
15	"type": "record",	
16	"name": "Iridium_Headers",	
17	"doc": "Metadata provided from the Iridium session",	
18 -	"fields": [
19 -	{	
20	"name": "imei",	
21	"type": "long",	
22	"doc": "IMEI unique identifier for source modem"	
23	},	
24 -	{	
25	"name": "iridium_ts",	
26	"type": "int",	
27	"doc": "Iridium session timestamp"	
28	},	
29 -	{	
30	"name": "sbd_session_status",	
31 -	"type": {	
32	"type": "enum",	-
33	"name": "sbd session enum",	•

Existing Data flow + Kafka Topics

Topic: numurus.data (json) Content: decoded Numurus data

Content: decoded PARC and USNA data

- Topic: oot.reports.health_and_status Content: float position and operations
- **Topic: oot.reports.environmental**
- Content: temp, salinity, etc.
- **Topic: oot.reports.mission_sensors**
- Content: hydrophone, camera, etc

NIWC deploys floats both pierside and in open water
 Pierside environment is signal-rich

Software Build Process – DevOps Principles

- Continuous Integration / Continuous Deployment
 - No mailing discs, minimize delays
- Leveraging primarily open source technologies
- ▼ Di2e Hosting source code repo
 - DoD instance of BitBucket, Jira, etc.
 - Accessible from internet
 - Accessible from NRDE GovCloud
 - Access controlled via CAC
 - Access limited to own team + Gov

Software Build Process - SUDOE

- ▼ **SUDOE** Secure Unified DevOps Orchestration Engine
- ▼ Dashboard for managing build, deployment, monitoring
- ▼ Supports many languages (e.g. Java, JavaScript, Python)
- Deploys software and infrastructure using micro-services, containers, and virtual machine technologies
 - Currently supports AWS deployment of Docker, Kubernetes, etc.
- ▼ Manages network and access rules
 - E.g. Routing, ingress, VPC
- ▼ Provides view of console/errors
- Actively being developed by NIWC

Software Build Process – SUDOE Process

- 1. Check code into DI2E
- 2. For new code, set up deployment location/size and ingress
- 3. For existing code, change git commit hash
- 4. Deploy/redeploy code, monitor error logs
- Can also provision EC2/VM for state-preserving exploration (e.g. Jupyter Notebook)
- No direct AWS Dashboard login/usage required

lamespace	ARETE 🔶 HOME 🔶 WORKLOA	DS 👙 DEPLOYMEN	NTS 🔶 EDIT DEPLOYMENT	
arete	Edit Deployment are	ete-decoder		
Vorkloads				
Deployments	Container Name:	arete-de	coder	
Pods	Image Location:	internal		•
iscovery and Load Balancing	Image:	oot-data	arete-decoder	٥
	The	2010.07	15710-55-52 0007 - #11+++2	
Ingresses	tay.	2013-01-	-13119.30.35.0002 - C418C62	
onfig	Memory Request:	Memory	Request	Mi 🕈
Config Maps	Memory Limit	Mamoo	Limit	
Persistent Volume Claims	menory cinic.	wennory	Carrie	
Secrets	Environment Variables:			
	Name		Value	
	Name		Value	

PACIFIC Phase 1 Lessons Learned - Inform TA1s

- ▼ Work with Gov + TA1 to refine onboard data processing
- ▼ Analyze sample raw data from sensors when available
- ▼ Analyze past deployments (pierside, SoCal, GoMex)
- ▼ Gauge usefulness of health & status reports
 - Float battery level, charge rate, status/error codes, scuttle msgs
- ▼ Assess accuracy and fidelity of environmental reports
 - Temperature, Wave height, GPS trajectories
- ▼ Determine validity of mission sensor data
 - Evaluate acoustic/radio signal summaries, image analysis
- ▼ Exercise any parameters/options/priorities TA1s provide

Naval Information Warfare Center

- ▼ CAC cards require long lead times
- ▼ Kafka: Great for pub/sub, less great for archiving
- ▼ Avro: be more proactive about defining, enforcing
- ▼ DI2E + SUDOE allows rapid code redeployment
- ▼ Shore/Pierside deployments more useful than expected
- ▼ TA1s need more feedback, earlier
- Oceanographic models are not always correct

- Request CAC + accounts for key personnel
- ▼ Utilize NIWC Gov-Cloud as early as possible
- ▼ Utilize SUDOE architecture for CI/CD of all software
- Understand OoT data flow and standards used by OoT
- ▼ Utilize existing Gov tools for troubleshooting
- ▼ Inform TA1s about utility of report contents, timing, etc.
 - Utilize TA1 provided options/configurations
- ▼ Deliver novel data 'products', analysis,

Proposals must address all of the following focus areas

- Field Performance and Command and Control
 - Visualization of float location, health, and field capability. Predict field performance resulting from anticipated float movement. Provide commands to floats as needed (e.g., scuttle, activate/deactivate sensors, etc.)
- Track Generation
 - Automation to associate float declarations, initiate a vessel track report, and discriminate between multiple vessels using multi-mode detections
- Data Discovery
 - Understanding of ocean signatures, identification of sensor associations across floats, and generation of many mission products available from the Ocean of Things data set. In addition to recognition of known phenomena, in Phase 2 the performers will identify and categorize new, unknown phenomena

- Visualization of float location, health, and field capability
 - Clear reporting of floats position, battery life, duty cycle settings, and any anomalous data
- Predict field performance resulting from anticipated float movement
 - Knowing the current and predicted positions of floats enables the contractor to assess the overall value of the field
- Provide commands to floats as needed (e.g., scuttle, activate/deactivate sensors, etc.)
 - Floats drifting together waste energy by reporting the same information when their duty cycles can be controlled by commands

DARPA Float Motion Prediction

Description

- Predict float motion using publicly available current + wind data
- Learn / Optimize parameters used to derive float motion (e.g. current + wind drag)

Communities of Interest

- Navy / DoD predict field coverage gaps due to natural motion of floats
- Ocean Modeling Identify limitations to current modeling techniques
- Machine Learning baseline algorithm + data for improving float motion modeling

Deliveries to the Consumer

 Generate NetCDF files of observed + predicted data

24 Hour Prediction

★ - Real float location after 24 hours

48 Hour Prediction

 \star - Real float location after 2 days

- Automation to associate float declarations, initiate a vessel track report, and discriminate between multiple vessels using multi-mode detections
- "Tracks" Are not limited to vessels. An automatically generated track can include (but is not limited to)
 - Ships
 - Marine Mammals
 - Weather Fronts
 - Algae populations
 - Eddies

• 6 modes simulated: Broadband acoustic, AIS, VHF, nav radar, camera, magnetometer

- Understanding of ocean signatures, identification of sensor associations across floats, and generation
 of many mission products available from the Ocean of Things data set
- In addition to recognition of known phenomena, in Phase 2 the performers will identify and categorize new, unknown phenomena
- In Phase 2, the contractor should be able to process and display environmental data for oceanographic and meteorological models

Voronoi cells bounded using shapely convex hull and padding routines yield bounded nearest cells.

- Floats include a variety of hotel sensors to support environmental analysis
 - Sea Surface Temperature
 - Inertial Measurement Unit
 - GPS Position
 - Surface pressure
 - Relative Humidity
 - Solar Flux
- Contractors should be able to take advantage of an unprecedented large field of data to identify features in real-time
 - For instance, using IMUs to sense changes in wave height, utilizing hydrophones/microphones to detect an increase in wind velocity, and surface pressure across the field to detect and track storm events

• The plot below shows one performer filtering a float's reported sea surface temperature to output a temperature which does not include diurnal surface layer heating

- A visual analysis of temperature variability during the night of February 2nd/3rd suggests the presence of a weather front. A north-south gradation of temperature and wave period was obvious in the float field in the early hours of Februay 3rd.
- To better understand the dynamics of this front, we animate the environmental data from the reporting floats in 15 minute increments during this time period. Sensor values are 1 hour averages of reported values, so each animation frame represents a sliding average of reported values. Bounded Voronoi cells are colored according to the closest float's reading as a distance from the float field mean reading.

Graph represents a composite of all hydrophone files from a single float pierside in San Diego. The blue-ish band at the bottom (100-400 Hz) represents the "ship" band for onboard analysis, the green-ish band (800-3200 Hz) represents the "wind" band.

- Show here UHF Band: 470 MHz – 826 MHz
 - Allocated primarily to digital TV
 - Periodic peaks at consistent frequencies
 - 6-hour masking strategy creates "bands" of peaks around certain frequenciescharacterizing RF environment
- Possible opportunity:
 - Detecting ship chatter

P	320			•								0.00				00 40											-		
P	310																												
	800																												
	790					1																	L						
Ľ.	-					2			E								1.1		12.00								1.1		11
ŀ	/80																												
L.	770							-				1000				a a a a a	6.0.6			0000			1000					998	
Ŀ	760																									a state to the second			
	750		008	19.90	132.01	0.00				10500	999					0000	000	3933	223	0.000	399	0448	0000			199999		9939	
ľ		0000		000			0000									0000	999	3339	000		0.00		0000				000	0000	
P	740				1 5 - 46	224	b - 5 M		200	<u>~~~</u> ~	9 9 3 9							8. P. W.		3 - 34	s d a a a		9.00	a series of					
Ľ	730 🛀										0000		•••		•••						• • • •		00				000		
	720	00994	000		000	00	0000	0000	1000	0000	300				•••				903) 🖤
Γ.	710									• • • •	è e e e	Pe e 🕶	• • •	• • •	• • •					Fig d e	••• •			• •) 🔿
٢	0		e 👘		() () () () () () () () () () () () () (100		1 0.0 0			.	10 00 (Na la		district in				i i an			9 99 9 4			(1 00)	0 0 0 0 0 0	100		•
F	709 - į) •
	6 90 e i																		••••								ė ee		• •
	680				•			•					•			•													
_ [6991														000		000		-		60
Ŧ																				1000									
2	660							-												-							-		
ake	650																												
Pe	640																												
2	- 20				-																								
S P			-										-		-														-
P	520																												
	510																												
	500																												
Ľ																										•			
P	390 6		••		••	••	608 (•						•	_		•								_		_	
P	580																							_					
	570			90.9					0.0.0														400 - 41						•
	560																												
Ľ																													
P	550						_		_				-																
P	540	•			••	•	•		••	•			•				•									••	•		
	530																												
	520																									•			
Ľ																													
P																													
	500																												
	490																												
Γ.	480						-																						
٢																			•										2
	• / •• /		1	7		1		21 0	1		1		1		07		T no	-	11		12		15		17		10		
	120	2020	2	,		29		. (,		L			0/		69	Eab 20	20		15		10		1/		19		

- Automatic detections of pre-defined anomalies is the key to interesting detections and changing today's ocean models. Examples include:
 - Abrupt changes in a float's track inconsistent with predicted track
 - Detects sub-mesoscale features not shown in today's oceanographic models
 - Increased energy outside normal bands of hydrophone data
 - Detects ships, marine mammals, or high wind
 - Abrupt changes in wave height or period
 - Indicate and unpredicted storm event, or the wake of a ship passing by
 - Unexpected change in Sea Surface Temperature
 - Could indicate a float has drifted into an eddy not shown in current models
- Knowing where the anomalies occur enables the contractor to further investigate the data

Dorformanco	Matrice	ΤΛ 2	(Data Ana	lytics)
Fenturnance	IVIELILS		Data Alla	iyuusj

	Phas	;e 1	Phase 2				
Metric	Threshold	Goal	Threshold	Goal			
Field Performance Prediction	Now-cast	24-hour forecast	72-hour forecast	120-hour forecast			
Multi-target discrimination	2 targets on orthogonal tracks	2 targets on ~60° divergent tracks	Clustered targets 2 or more	Clustered targets 4 or more			
Track initiation	≤ 8 geo-separated reports	≤ 5 geo-separated reports	≤ 4 geo-separated reports	≤ 3 geo-separated reports			
	Single sensor	≥ 2 sensor types	≥ 2 sensor types	≥ 3 sensor types			
Track continuity	≥ 30% avg. float hold time ≥ 60% avg. float hold time		≥ 50% avg. float hold time	≥ 85% avg. float hold time			
Track association	75% if same sensor modality	75% if same sensor modality	75% if same sensor modality	75% if same sensor modality			
	-	25% if different sensor modality	25% if different sensor modality	50% if different sensor modality			
Data discovery	Automatic recognition	of known phenomena	Recognition of new phenomena				
Additional Missions	Technical (DARPA strongly desires innovation Proposals must detail mission	performance measure for additiona on in additional mission capabilities on specifications and technical perfo	I missions shall be detailed in pro beyond track generation and tar ormance measure for each additi	pposals get behavior characterization. onal mission proposed.)			

Work towards deliverable data products

- Interact with the consumer communities (meteorological, oceanographic, defense, marine biology, commercial shipping, oil and gas, and any others) early to learn what products they value
- Every algorithm developed should support a data product downloaded by an end user

Collaborate with Float Developers early on

- Early and frequent interface fosters an understanding of what data is being delivered by each individual float
- Understand the data offered by the floats before they go in the water, and influence TA-1s with recommendations for the best way to structure and prioritize data

Do not overdevelop the User Interface

- The interface needs to be usable by a trained operator, but is not the final deliverable in this program
- Function and usability take precedence over "sleek" design

Perform work in the SUDOE cloud interface

- Offline development programs (e.g.. Matlab) are not representative of the complexities exhibited working with realtime data in the cloud
- Developing offline does not promote developing a usable interface in the cloud

Refer to the BAA for detailed specifications

Target Track Development

- "Target" in this program is anything that can described with an associated track, including but not limited to:
 - Ships
 - Marine Mammals
 - Weather Fronts
 - Algae populations
 - Eddies

Environmental Analysis of Interesting Local Features

- Large and sub-mesoscale features off the California Bite
- The Loop Current and associated Eddies in the Gulf of Mexico
- Passing weather fronts

Performers will monitor floats

- Execute float Command and Control
- Analyze float lifecycles
- Support during deployment to address potential issues

Ocean of Things program milestones and schedule

Ocean of Things website with data files

• https://oceanofthings.darpa.mil

Ocean of Things Data Analytics Phase 2 BAA

https://beta.sam.gov/opp/37991fec08
 e949db80f9e3185d1a319b/view

DARPA Opportunities

 https://www.darpa.mil/work-withus/opportunities

	About OoT	Benefits	Locations	Floats	Data	About DARPA	
Data Files							
	Search:		Sort by:		Res	sults per page:	
All	Search		Date		• 1	0	v
Temperature	Select All Download S	Selected					
Microphone							
Inertial Measurement Unit/Accelerometer	gps_30_days_soarte Type: GPS Location: Gulf o Description: Motion Predic sha1:	ech_20191213 of Mexico Rang tion Trajectorie	7_gom_motio ge: 30 days Date s	n_prediction e Posted: 12-17	n _traject -2019 P∉	o ries.csv erformer: soartech	
Humidity	gps_12_hrs_leidos_2	20191220_go	om_ocean_mo	del_1km_3D	var.png		
GPS	Type: GPS Location: Gulf o Description: Model 1km 3E	of Mexico Rang Ovar	ge: 12 hours Da	te Posted: 12-2	0-2020 F	Performer: leidos	
Air Pressure	sha1:						
Cloud-cover camera/Solar intensity							
Field Performance and Prediction							
Other							

Mr. John Waterston john.waterston@darpa.mil

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)