
Hardening Development Toolchains against Emergent Execution Engines
(HARDEN)

Dr. Sergey Bratus
Program Manager

Information Innovation Office (I2O)

Proposers Day

September 30, 2021

Approved for public release. Distribution unlimited.

2

Program objective

Develop practical tools to anticipate, isolate and mitigate emergent
behaviors throughout the software lifecycle, to improve security

outcomes in software for complex integrated systems

Approved for public release. Distribution unlimited.

3

Weird machine exploit: Overhear conversations
• Legend has it that John Quincy Adams positioned his

desk at the focal point of the ceiling to overhear
conversations of the opposition

Same design pattern: Parabolic ceiling
• Two people can stand on opposite sides of the arch

and facing away from each other hold a conversation
despite being 30 feet apart

Design pattern
Parabolic ceiling of the U.S. Capitol Statuary Hall

Portability of exploit
Grand Central Terminal in Midtown Manhattan

It’s not the bricklayer's fault, but the architect’s design

Source: aoc.gov Credit: David Hsu -Flickr/Creative Commons

Approved for public release. Distribution unlimited.

Controlling emergent behaviors is hard

4

Challenge: Modern exploitation techniques are portable and robust
• Exploitation techniques are portable between applications, operating systems, and CPUs
• Attacks are often based on reliable design patterns of emergent behaviors not on particular flaws of a code base
• Exploits reuse the target's own unprotected abstractions at multiple interacting levels and form patterns around them

ROP
x86

ROP
ARM

ROP
MIPS

SROP

COOP

JOP Heap exploits
DL libc malloc

Heap exploits
Win32

Heap exploits
Windows LFH

Heap exploits
JEmalloc

Heap "Feng-
shui"

Double-free,
triple-free

Heap
starvation

Chrome/V8
heap/GC

Firefox heap/
JS exploits

More abuses of
dynamic memory
management systems
across applications,
libraries, and CPUs

Stack
(late 1990s – mid 2000s)

Adversarial reuse of C/C++ control flow
implementation patterns

Heap
(early 2000s – mid 2010s)

Adversarial reuse of memory
management patterns

CPU
(late 2010s – now)

Meltdown and Spectre types of vulnerabilities
(currently 40+ and counting)

other CPUs

other C/C++
abstractions

Three historic examples:

Return-Oriented
Programming

JOP Jump
SROP = Signal Oriented Programming
COOP Counterfeit Object Approved for public release. Distribution unlimited.

5

• Mitigations are not applied at the right level of abstraction—fear of unexpected
consequences, overfocus on implementation

• Initial locally focused mitigations are typically ineffective: small tweaks of exploits
defeat them
• Mitigations take several cycles to converge to effectiveness

• Advanced attackers are ahead of defenders, because their exploit harnesses model the
target's exploitable abstractions

Challenge: Mitigations ignore design causes of emergent behaviors

Approved for public release. Distribution unlimited.

6

Root cause: Unintended composable emergent execution ("weird machines")

Intended
functionality Weird machine

(emergent behavior)

• Abstractions are implemented as compositions of
lower-layer "building block" abstractions

• Lower-layer abstractions are designed to be
composable; this enables unintended compositions
(a.k.a., "abstractions are leaky")

• The fact that abstractions are both unprotected and
composable leads to emergent behaviors

• Code level: C, C++, JavaScript
• Data level: crypto package signing, object formats
• Design/algorithm level: heap management,

caching
• Emergent behaviors accumulate into complex

composable pools, reliable but unrelated to intended
abstraction, enable adversarial reprogramming

Emergent behaviors

Today: Abstractions are unprotected;
no capability for reasoning about emergent behaviors

Intended design
pattern

Software design,
development, and build process

Intended
abstraction

behavior

Abstractions
leak

Leaks
compound,
compose

Exploit
engines
emerge

Approved for public release. Distribution unlimited.

7

Vision: Model and control emergent execution

Intended
functionality

Intended
abstraction

Models influence
sensor placement

Models

Cross layer reasoning
of the composability
of emergent behaviors

Tooling for analysis
& engineering

Sensors

• Intended abstractions are protected
• Accumulation of emergent behaviors is

controlled
• Emergent execution engines ("weird machines")

are suppressed

Approved for public release. Distribution unlimited.

Approaches to protecting abstractions:
• Models of intended behavior
• Static reasoning to bound unintended composability
• Hardened runtime instrumentation against deviations
• Integration with design and development tools

8

Technical areas

Intended
functionality

Intended
abstraction

Models influence
sensor placement

Models

Cross layer reasoning
of the composability
of emergent behaviors

Tooling for analysis
& engineering

Sensors

TA2

Modeling

TA3

Voice of
the offense

Toolsmiths

TA1
TA 1: Tooling for developers

TA 2: Modeling of emergent behaviors

TA 3: Voice of the offense

TA 4: Integration and systems
engineering evaluation

TA4
Integration and

systems
engineering
evaluation

Exploit InsightsMulti-layer ModelsDev Tools

Systems Engineering

TA 1 TA 2 TA 3

TA 4

Approved for public release. Distribution unlimited.

9

BAA's exemplary technological use cases for evaluation

UEFI, Chain-of-Trust

Hardened sensor system based on UEFI/SOSA
standards for chain-of-trust (trusted sensor)

Approved for public release. Distribution unlimited.

Hardened integration technological stack for a COTS-based pilot's
tablet to interface with aircraft's trusted mission computer

Pilots' tablet integration

Source: airforcemag.com

SOSA: Sensor Open Systems Architecture

10

TA 1: Tooling for developers

Challenges
• Overcome state explosion of typical models of software behavior
• Make annotation of expected behavior and predictions of emergent

behavior accessible to regular software developers
• Develop efficient means of communicating about Emergent Execution

(EE) with developers
• Integrate anticipation of EE with common developer workflows and tools

TA1

Toolsmiths

Approved for public release. Distribution unlimited.

Cross layer
reasoning
of the
composability
of emergent
behaviors

11

TA 2: Modeling of Emergent Execution (EE) behaviors

Challenges
• Create models of emergent execution that capture designed-in EE and

abstract away irrelevant parts of the implementation
• Model interfaces and APIs at several layers of abstraction, and their

interactions
• Develop effective tiered representations of abstractions to reason

about EE, and formats to efficiently store and retrieve these
representations alongside software deliverables (cf. debugging
symbolic data formats)

TA2

Modeling of emergent
behaviors

Approved for public release. Distribution unlimited.

TA3

Voice of
the Offense

12

TA 3: Voice of the offense

Challenges
• Gather and generalize dispersed exploitation expertise across

technical domains, representative of the edge-of-the-art
• Translate exploit development intuition and tradecraft for the

formal modeling approaches of TA2
• Test actual effectiveness of proposed EE mitigations

Approved for public release. Distribution unlimited.

13

TA 4: Integration and systems engineering evaluation

Challenges
• Deploy tools and models developed by TA1 and TA2 to anticipate and

mitigate EE in notable open-source integrated software systems relevant to
BAA's technological use cases and suitable for fundamental research

• Produce the testbed to demonstrate TA1, TA2, and TA3 technological
capabilities, and to evaluate them against program metrics in coordination
with the TA3 performer

• Set up and manage transition to DoD systems of interest

TA4
Integration and systems engineering evaluation

Approved for public release. Distribution unlimited.

14

Evaluation metrics and milestones

Metric Phase I (18 months)
Component scope

Phase II (18 months)
Subsystem scope

Phase III (12 months)
Integrated system

Al
l

Lines of Code, C/C++ 50—100K 800K—1M 10—20M

Exemplary software complexity OpenWRT core
IoT router/bridge firmware

TianoCore EDK2 UEFI firmware Android (AOSP) subset/tablet
ROS2/DDS avionics firmware (UAV)

TA
1

&
 T

A2

Instrumentation overhead <=15% <=10% <=5%

Time to transformation accuracy 1-2 months <=4 weeks <=4 days per component

Coverage of objects and interfaces 60%, manual selection of test surface 80%, automated, with human-in-
the-loop

95%, fully automatic test surface
selection

Alert / mitigation effectiveness >=70% of tested emergent behaviors
mitigated

>=80% >=90%

TA
3 Analysis efficiency over SoTA red

team
10x on average Up to 100x, 30—50x on average 1000x

Approved for public release. Distribution unlimited.

Program schedule

15Approved for public release. Distribution unlimited.

16

• Two annual Principal Investigator (PI) meetings centered around a challenge problem
• PM site visits between PI meetings
• Annotated slide presentations will be submitted within two weeks after program kick-off meeting and

after each review
• Quarterly technical progress reporting

• Technical report describing progress, resources expended and issues requiring Government
attention, provided 10 days after the end of each quarter

• Monthly financial reporting
• Financial/technical progress reporting to DARPA’s Deliverable Repository (VAULT)
• System Development Plan provided one month after the kick-off meeting for each phase

• Describe the scope/design and hardware and software architecture
• Software and software Documentation – All computer software delivered under the HARDEN program

must be delivered as source and object executable code. Include the source listings and source code for
the target computer systems, as well as any build scripts or other technical information required for
DARPA to compile all delivered source code.

• Hardware designs and documentation
• Technical data generated by the program
• Phased and Final Technical Report

Meetings and reporting requirements

Approved for public release. Distribution unlimited.

17

• Proposals due: Tuesday, November 4, 2021 at 12:00 noon (ET)

• Government anticipates multiple awards for TA1 and TA2, and a single award for TA3 and TA4
• Procurement contracts, Cooperative Agreements, or Other Transactions (OT)

• Proposers may submit multiple proposals
• Each proposal may address any one TA, or a combination of TA1 and TA2

• If submitting a combination of TA1 and TA2 each TA must be clearly distinct and
separable by costs and Statement of Work

• A proposer submitting proposals to TA1 and TA2 may be selected to perform on one or
both of these TAs

• TA3 and TA4 proposers cannot be selected to perform on any other TAs
• Which to consider for award (if any) is at the discretion of the Government

• To expedite award contracting, proposers are encouraged to have sub-award agreements in
place ahead of award notification

Funding and programmatic details

Approved for public release. Distribution unlimited.

18

Funding and Programmatic Details

BAA Location
• Posted on the Contract Opportunities website
(https://sam.gov/opp/3f6ee0a93e4844e59e3681e2cdf05936/view)
and Grants.gov website (https://www.grants.gov/web/grants/view-opportunity.html?oppId=335831)

Questions Today
• Questions can be submitted until 1:35 PM ET via HARDEN@darpa.mil. Please do not post questions in

Zoom.
• Questions not answered verbally during today’s Q&A session will be addressed through the FAQ. This will

get regularly updated and posed on https://www.darpa.mil/work-with-us/opportunities.

Information precedence
• If anything said or addressed during this presentation or in the FAQ conflicts with the published

solicitation, the BAA takes precedence. The Government may issue amendments to the BAA to effect
any changes deemed necessary in response to the FAQ. Such amendments would be posted to Contract
Opportunities (https://sam.gov) and Grants.gov (https://www.grants.gov) prior to the solicitation closing

date and would supersede previous versions of the solicitation.

Approved for public release. Distribution unlimited.

https://sam.gov/opp/3f6ee0a93e4844e59e3681e2cdf05936/view
https://www.grants.gov/web/grants/view-opportunity.html?oppId=335831
mailto:HARDEN@darpa.mil
https://www.darpa.mil/work-with-us/opportunities
http://fbohome.sam.gov/
https://www.grants.gov/

www.darpa.mil

19Approved for public release. Distribution unlimited.

	Hardening Development Toolchains against Emergent Execution Engines (HARDEN)
	Program objective
	Controlling emergent behaviors is hard
	Challenge: Modern exploitation techniques are portable and robust
	Challenge: Mitigations ignore design causes of emergent behaviors
	Root cause: Unintended composable emergent execution ("weird machines")
	Vision: Model and control emergent execution
	Technical areas
	BAA's exemplary technological use cases for evaluation
	TA 1: Tooling for developers
	TA 2: Modeling of Emergent Execution (EE) behaviors
	TA 3: Voice of the offense
	TA 4: Integration and systems engineering evaluation
	Evaluation metrics and milestones
	Program schedule
	Meetings and reporting requirements
	Funding and programmatic details
	Funding and Programmatic Details
	Slide Number 19
	Backup slides
	Example: Emergent behaviors in Root-of-Trust
	Program structure
	Transition use case: Hardening UEFI Chain of Trust
	Evaluation use cases

