
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Best Practices for Secure Data Intake, Data Modeling,
and Data Design

Learnings from the Safe Documents (SafeDocs) Program

Sergey Bratus

Defense Advanced Research Projects Agency/Information Innovation Office (DARPA/I2O)

Execu�ve summary

Design and implementa�on errors in so�ware that receives and validates electronic data lead to
vulnerabili�es that may lead to mission failure. To reduce risk to the mission, electronic data
formats MUST be modeled down to the wire format level, and the so�ware code that ingests
and validates data SHOULD be automa�cally generated from such models.

Background

Data objects. Sensor Open Systems Architecture (SOSA) so�ware and hardware components
send and receive data in the form of electronic messages and streams. These messages consist
of data objects from the SOSA data models and of auxiliary data (a.k.a. metadata0F

1) used to
encode these objects into strings of bits and bytes (e.g., for on the wire transmission or
storage), and to authen�cate and configure components and connec�ons. Examples of auxiliary
data include codes for types and subtypes of messages, lengths of variable-length fields of data
structures represen�ng objects, encoded cryptographic creden�als such as keys, and so on.

Data rela�onships. Typically, certain rela�onships are expected to hold between the data
objects themselves and between the data objects and the associated auxiliary data. For
example, an object represen�ng a rela�ve �me value must be preceded by another object that
represents an absolute �me value. As another example, the actual length of an encoded
variable-length value must correspond to the element(s) that describe the lengths of that value
(if any) and of objects enclosing that encoded value in their own encoding, the sum of the
lengths of parts should be less or equal to the length of the whole, and so on. As a general rule,
when two or more elements of auxiliary data affect the processing of the message, their values
must agree so as not to result in conflic�ng interpreta�ons of the same message.

1 Although metadata is some�mes misunderstood to imply that it doesn't need to be formally modelled or
checked, this is a dangerous misconcep�on. At some point some code will interact with the supposedly passive
metadata (even just atemp�ng to display it)—and will get exploited by it! Log4Shell and various Unicode injec�on
atacks forcefully demonstrate that "metadata" is s�ll "data" and needs to undergo the same thorough valida�on
as any other data.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Vulnerabili�es of data intake. To be transmited over the wire or air, data objects are converted
to sequences of bits or bytes, i.e., serialized by the sending component. Receiving so�ware
interprets the serialized representa�on to reconstruct the data objects and must validate any
rela�onships that may be assumed by subsequent so�ware code processing these objects.
Failure to validate expected rela�onships typically leads to vulnerabili�es. For example, the code
that atempts to (re)construct the absolute �me stamp from a rela�ve one may scan the
message backwards for a preceding absolute �me value and would fail if no such value is found,
leaving the computa�on in an invalid state. When declared lengths of encoded fields disagree,
e.g., an inner object is larger than the outer object, it atempts to allocate memory based on the
outer object's supposed length and then fills that memory with the decoded content of the
inner object which may lead to overwri�ng memory allocated to other objects, a.k.a. memory
corrup�on, and so on. When two conflic�ng auxiliary data descrip�ons of an object's size or
content are possible, different components of the system may end up unwi�ngly implemen�ng
these conflic�ng interpreta�ons, leading to inconsistent global state of the system. All of these
errors are known to have led to cri�cal vulnerabili�es, including the infamous Heartbleed.

Best prac�ces

The code that reconstructs and validates incoming data should be generated from a machine-
readable (a.k.a. mechanized) model of the data that declara�vely describes both the structure
of objects and their rela�onships and extends to the wire-level encoding of these objects and
related auxiliary data.

Low-complexity, interoperable data format defini�ons and data models. Data format design
should pay close aten�on to parsing complexity and interoperability while suppor�ng a formal
seman�cs. The data format must avoid vulnerabili�es induced by complex parsing rules that
compromise the earlier recommenda�on for strict valida�on of input data before any
applica�on processing. Interoperability across different implementa�ons of the same format
version and across different format versions is improved by ``virtuous intolerance’’ (RFC 9413)
where all devia�ons from the specifica�on are treated as fatal. Data models must formalize the
structure and invariants reflected in the data format defini�on.

Models must cover wire format. The mechanized model MUST refine the physical data model
down to the wire format, i.e., to the bit-level representa�ons of objects and metadata. This
refinement is needed to preclude ambiguity of interpreta�on and resul�ng vulnerability-
inducing implementa�on disagreements and to avoid data corrup�on errors while
reconstruc�ng the objects.

Models must cover data dependencies and rela�onships. The mechanized model MUST
declare all rela�onships between different data objects, auxiliary data, and metadata1F

2. This is
necessary to ensure that no assumed but actually unvalidated data property is acted on by

2 A rela�onship that is assumed but not checked will be acted on at some point by some code—and will likely help
exploit that code. Also, the same cau�on about metadata as described in footnote 1 applies.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

subsequent code, leading to inconsistent state, data corrup�on, or vulnerability. Since
rela�onships in mul�-value data formats are typically complex, enumera�ng their complete set
is key to assuring that all are checked correctly by the implementa�on.

Data intake code should be auto-generated from models. The implementa�on code SHOULD
be automa�cally generated from the mechanized model. The generator should produce the
code that provably, correctly, and completely implements the structure and rela�onship
valida�on checks. This is necessary for both complex protocols and messages, and for seemingly
simple ones, as examples of vulnerabili�es resul�ng from forgoten or mis-implemented checks
abound for both kinds. Moreover, automa�c genera�on of data structures from serialized input
enables automa�c consistency checks between sending and receiving applica�ons to use
models rather than code, which will considerably simplify these consistency checks and enable
faster and more assured integra�on.

SOSA Alignment

The above best prac�ces significantly improve the quality atributes of interoperability and
securability of SOSA components.

Interoperability: Mechanized data models assure equivalent interpreta�on of all messages by
all SOSA sensor components that deploy code automa�cally generated from these models. This
avoids a common and o�en cri�cal failure mode in which interpreta�ons of the same data
diverge among components of the system.

Moreover, equivalent interpreta�on of complex messages by independently developed parsers
tends to be among the hardest proper�es to test for and cer�fy conformance. Deploying
automa�cally generated code across components will reduce the effort needed for tes�ng,
cer�fica�on, and integra�on.

Securability: Mechanized data models with unambiguous and complete descrip�ons of validity
enable checking and filtering of incoming data for well-defined proper�es at well-defined
interfaces or architectural inser�on points. This system property is essen�al for securability of
the overall system in mul�ple scenarios, including triage of vulnerabili�es and response to
changing opera�ng condi�ons, wherein certain messages can be blocked due to threats.

Zero Trust: Mechanized data models are essen�al for assuring zero trust proper�es of
components and systems since authen�ca�on---essen�al to zero trust---can only happen a�er
incoming messages are deserialized and authen�ca�on creden�als such as cryptographic tokens
are extracted from them. Vulnerabili�es in deserializa�on code thus, can be exploited before
authen�ca�on can happen and the malicious message's contents or commands can be
discarded as unauthen�cated or unauthorized. This makes exploita�on of these vulnerabili�es,
known as pre-authen�ca�on vulnerabili�es, par�cularly devasta�ng.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Pre-authen�ca�on vulnerabili�es destroy zero trust proper�es. Automa�cally genera�ng pre-
authen�ca�on code from mechanized data models of authen�ca�ng data mi�gates the risk of
pre-authen�ca�on exploits.

In addi�on to pre-authen�ca�on vulnerabili�es, there is another existen�al threat for zero
trust: chain-of-trust parsing vulnerabili�es. This class of vulnerability lurks wherever
cryptographically signed data objects must be processed in a well-defined order (“chain”) to
extend trust to the document or message, and further valida�on is based on processing of
previously interpreted data. Any devia�ons from the order of processing or any disagreements
about which objects or spans of data are covered by previously checked cryptographic
creden�als destroy the chain and the trust. Unambiguously defining the order, the objects and
the coverage mi�gates this existen�al risk.

Acquisi�on: In addi�on to the technical alignment of the best prac�ces with SOSA, there is a
solid business case to be made. The SOSA Acquisi�on and Contrac�ng Guide outlines the
business case for SOSA and includes the following acquisi�on goals:

1. Reduced acquisi�on cycle �me and overall life-cycle cost
2. Ability to insert cu�ng edge technology as it evolves
3. Commonality and reuse of components among systems
4. Increased ability to leverage commercial investment

Following the best prac�ces above is in fact crucial for achieving these business and acquisi�on
goals. In par�cular, mechanized data models have already been shown to aid in all four of these
acquisi�on goals, and the suppor�ng technologies developed in the SafeDocs program are
already showing their promise for both exis�ng and under-development SOSA data formats.

Suppor�ng technologies

DARPA's SafeDocs program developed several Data Descrip�on Languages (DDLs) for crea�ng
and refining mechanized models of incoming data. These DDLs are accompanied by
environments and tools to help write, "debug", and test models in DDL and to generate input
handling and input filtering code from these models.

The common capability of these models is to describe the structure of data objects, their
representa�ons down to the wire format, and—crucially for valida�on and assurance—of their
mutual dependencies and rela�onships. The DDLs vary in style and primi�ves of their modeling
approaches, to accommodate a wide variety of developer experiences. The suppor�ng tools
also vary in the so�ware dependencies they require.

For example, the Hammer toolkit is built around a standard C library and requires no addi�onal
dependencies beyond a typical C/C++ build chain. Hammer also offers bindings that allow it to
be used from Python, Java, .Net, and other popular languages. The DaeDaLus and Parsley kits

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

provide stronger guarantees at the cost of requiring addi�onal dependencies such as Haskell
and the PVS proof and reasoning system. See table 1 in the appendix.

The following tools can help software developers and cybersecurity/privacy researchers
improve their organization’s security posture in handling electronic documents. These range in
functionality and specificity for a variety of uses. Check each description and click on the tool’s
links for additional information.

Programmer resources for describing data formats and auto-genera�ng parsing code

• DaeDaLus: Data description language for defining data formats and generating memory-
safe parsers in a variety of languages.

• Hammer: Declarative secure parser/scanner construction kit in C, based on the parser
combinator approach but requiring no additional dependencies beyond the Hammer C
library.
Parsley: Data description language that combines grammars and constraints in a
modular way to capture data formats such as MAVLink, PDF and Executable and Linking
Format (ELF).

• PVS/PVS2C: Interactive proof assistant with C code extraction for defining efficient, correct-by-
construction parsers and independent proof-of-parse verifiers.

Tools for understanding document collec�ons and format rules

• File Observatory: System to enable visualization, search, and discovery of complex file
format patterns and data.

• Format Analysis Workbench: Platform for running and analyzing the output from any
number of parsers dealing with a single file or streaming format. It is a workbench for
developing and applying tools that aid in understanding the de facto formats which
naturally emerge from open standards.

• Dowker tools for statistical inference of file format behaviors: Provides the ability to
classify file behaviors against an arbitrary number of Boolean features to help
developers focus into unusual or interesting behaviors. A demonstration video is
available at https://www.youtube.com/watch?v=i3wl2jdIZv8.

• PolyFile: A utility to identify and map the semantic structure of files, including polyglots,
chimeras, and the so-called “schizophrenic” files that appear differently to different
software readers. It can be used in conjunction with its sister tool PolyTracker for
Automated Lexical Annotation and Navigation of Parsers, a backronym devised solely for
the purpose of collectively referring to the tools as The ALAN Parsers Project.

Tools to understand behavior of exis�ng parser code

• PolyTracker: A general-purpose tool for efficiently performing data-flow and control-
flow analysis of programs. It is a LLVM pass that instruments programs to track which
bytes of an input file are operated on by which functions. It outputs a database
containing the data-flow information, as well as a runtime trace. PolyTracker also

https://github.com/GaloisInc/daedalus
https://gitlab.special-circumstanc.es/hammer/hammer
http://spw20.langsec.org/papers/parsley-langsec2020.pdf
https://github.com/jpl-safedocs
https://github.com/GaloisInc/FAW
https://github.com/kb1dds/dowker_statistics
https://www.youtube.com/watch?v=i3wl2jdIZv8
https://github.com/trailofbits/polyfile
https://github.com/trailofbits/polytracker

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

provides a Python library for interacting with and analyzing its output, as well as an
interactive Python REPL.

• Graphtage: Command-line utility and underlying library for semantically comparing and
merging tree-like structures, such as JSON, XML, HTML, YAML, Property List (Plist), and
CSS files.

Resources for the Portable Document Format (PDF)

• Arlington PDF Model: Named after the city in which DARPA is located, provides an
authoritative and comprehensive document object model for PDF, facilitating
enhancements to security and driving new modalities in specification development.

• Digital Corpora Project Corpus: Approximately eight million real-world PDFs available
for research, testing, and evaluation.

• SPARCLUR: A collection of various wrappers for extant PDF parsers and/or renderers
along with accompanying tools for comparing and analyzing the outputs from these
parsers.

Tools to secure Python’s data format overwhelmingly used in Ar�ficial Intelligence
research

• Fickling: Decompiler, static analyzer, and bytecode rewriter for Python pickle object
serializations.

SafeDocs also developed tools for integra�ng DDLs with VisualCode and Emacs editors, as well
as with Visual Studio. SafeDocs developed visual debugging tools for data formats such as
PolyFile and Format Analysis Workbench (FAW), and tracing tools for parsers, such as
PolyTracker. See appendix table 2 for addi�onal SafeDocs tool informa�on.

Insufficiency and an�-paterns of current approaches

Experience shows that today's approaches are insufficient to eliminate vulnerabili�es in code
that handle data intake. This insufficiency is due to a combina�on of weaknesses in exis�ng best
prac�ces and persistence of design and implementa�on an�-paterns that should be avoided.

Hand-coding of data intake code should be avoided. First and foremost, hand-coding of
parsers, deserializers, and validators of untrusted input data—i.e., poten�ally cra�ed,
manipulated, or malicious data—should be avoided. This is especially true for languages
without memory safety guarantees such as C and C++, because any memory opera�on that
involves values derived from untrusted input may result in memory corrup�on when based on
an unchecked assump�on about input. For example, alloca�ng memory based on a size value
computed from the inputs may result in alloca�ng insufficient space for a subsequent series of
writes to that memory, resul�ng in overwri�ng and corrup�ng unrelated data in neighboring
memory. That corrupted data may then be accessed by other code that does not expect it to be
corrupted, compounding the unintended execu�on effects. Even reading data based on values
derived from input may result in a vulnerability: unrelated data may be read and then included
in outgoing messages, as was the case with the infamous Heartbleed vulnerability.

https://github.com/trailofbits/graphtage
https://www.pdfa.org/presentation/the-arlington-pdf-model/
https://www.youtube.com/watch?v=ELAFymRYV30
https://downloads.digitalcorpora.org/corpora/files/CC-MAIN-2021-31-PDF-UNTRUNCATED/
https://pypi.org/project/sparclur/
https://github.com/trailofbits/fickling

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Simply put, hand-written parsing code should be deprecated in high assurance systems.

“Input sani�za�on” is an an�-patern for high assurance systems. The prac�ce of scanning
inputs for known problema�c bit or byte sequences and automa�cally changing these inputs
into forms presumed benign, is, in fact, an an�-patern that should be avoided. This prac�ce,
known as input sani�za�on, may be occasionally effec�ve against known atacks by disrup�ng
their payloads or injec�on mechanisms, but is also known to be both bypassed by atackers or
even leveraged to turn benign inputs into malicious ones. This is because validity of a complex
input is typically the property of an en�re message rather than a property of a few easily
recognizable "pathogen" bytes that can be checked locally without regard for the larger
message context.

Simply put, the "sanitization" practice of spot checks and "fixes" based on partial scanning of
complex messages should be avoided in high assurance systems.

Intermixing data intake checks and data processing leads to errors. Many current
implementa�ons of complex protocols intermix input-checking and applica�on logic, introduces
confusion and errors. It is o�en not clear at most points in the code which assump�ons about
the data rela�onships are checked and which are yet to be checked, which results in ac�ng on
yet unchecked assump�ons and exploita�on.

In par�cular, specifica�ons of applica�on protocols tend to come with tables that specify data
field sizes and expected value types in machine-readable forms, but use English natural
language statements to describe the interdependencies and rela�onships between these fields.
The expecta�on is that some of the ini�al input-handling code can be automa�cally generated
from the tables, whereas the rest of the English-described rela�onships will be checked by the
custom applica�on logic. In short, checking of the more advanced rela�onships is postponed
un�l the data contents extracted from inputs actually begin driving the applica�on—i.e., when
it is too late to defend the applica�on logic.

Simply put, purely syntactic checking of data that postpones the checking of object
dependencies and relationships until the data is acted upon and intermixes checking with the
application logic is not sufficient for high assurance systems.

Finally, without a complete and unambiguous machine-readable model of input data,
automated checking of the manually produced code for errors is incomplete and inefficient,
even for seemingly simple wire formats. Although automa�c analysis of code is desirable, it is
either ineffec�ve or inefficient without a mechanized model, because analyses of this code must
guess which proper�es are desired and which are incidental to or emergent from an
implementa�on. When expecta�ons of object/value proper�es and rela�onships between
objects and values are not mechanized, they cannot be checked exhaus�vely. An expecta�on
that is acted upon but not actually checked is liable to introduce memory corrup�ons,
overflows, and other unintended behaviors. Without a complete and unambiguous descrip�on

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

of expecta�ons, automa�c checking is reduced to either heuris�cally looking for known coding
mistakes and misses more complex condi�ons.

Simply put, neither static (e.g., "linting") nor dynamic (e.g., "fuzzing") automated analyses are
sufficient for high assurance systems and should not be used as a sole basis of trust in that code.

Contrast this with code automa�cally generated from declara�ve descrip�ons of desired and
expected data format structure and rela�onships, where the desired proper�es are explicit at
every point. Indeed, non-declara�ve manually coded data validity logic should be replaced
with declara�ve-based automa�cally generated code.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Appendix

SafeDocs DDLs, their outputs and their dependencies

DDL Output Dependencies

DaeDaLus Parsers in C++ or Haskell GHC 9.4.5 and a Hsskell package manager
(e.g., Cabal 3.6). Offline install available with
no dependencies.

Hammer Parsers in C, C++, Python, Ruby,
Perl, Go, PHP, .NET

SCons

Parseley An interpreter in OCaml OCaml 4.11.1 or later and Opam 2.0 or later.

SafeDocs performer tools and integra�ons

SRI Interna�onal

Tool Name URL Pla�orm or Deps License

Hashashin htps://github.com/ri
verloopsec/hashashin

python, BinaryNinja MIT

Descrip�on “Hashashin leverages IL based fuzzy hashing techniques to generate a
compiler/architecture agnos�c fingerprint which can be used for
iden�fying the source of an unknown binary.”

Tool Name URL Pla�orm or Deps License

Data-iop Analyzer N/A eBPF, awk, strace Proprietary

Descrip�on The data-iop Analyzer is a part of Narf’s PolyDocPoC tool that uses the
`bp�race` tool to derive a dynamic trace of the “data I/O protocol”:
the format-relevant I/O behavior of a PDF parser. It also includes a
post-processing tool for strace-derived system call traces that models
the state of major sequences of PDF opera�ons, such as profiles of
memory buffer use and gaps (unread bytes) in files.”

https://github.com/riverloopsec/hashashin
https://github.com/riverloopsec/hashashin

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name URL Pla�orm or Deps License

PolyDocPoc & Sir-
Parse-a-Lot

 N/A Polyswarm network,
python, Docker

Proprietary

Descrip�on These tools are parser instrumenta�on frameworks that apply a set of
Analyzers to data from the PolySwarm threat intelligence ar�fact
network to conduct format-based detec�on of malware in complex
files.

Tool Name URL Pla�orm or Deps License

MEOW suite htps://github.com/S
RI-CSL/safedocs-
meow

Intel Pin MIT

Descrip�on “MEOW is a tool for format-aware tracing of memory events based on
Intel Pin”

Tool Name URL Pla�orm or Deps License

NITF KaiTai Struct
grammar

htps://formats.kaitai
.io/ni�/index.html

Minimal KaiTai Struct
v0.8

MIT

Descrip�on “NITF KaiTai Struct grammar defines an open source KaiTai spec
u�lized for parsing NITF files"

Tool Name URL Pla�orm or Deps License

NITF Mutator N/A python MIT

Descrip�on “Library for manipula�ng NITF files used to evaluate NITF parsers”

https://github.com/SRI-CSL/safedocs-meow
https://github.com/SRI-CSL/safedocs-meow
https://github.com/SRI-CSL/safedocs-meow
https://formats.kaitai.io/nitf/index.html
https://formats.kaitai.io/nitf/index.html

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name URL Pla�orm or Deps License

SRI Recognizer htps://github.com/S
RI-CSL/safedocs-
recognizer

Go, python, Docker,
Shell

MIT

Descrip�on “DARPA SafeDocs so�ware suite to bundle and orchestrate various
format-aware tracing tools.”

Lockheed Mar�n Advanced Technology Laboratories

Tool Name URL Pla�orm or Deps License

parseLab htps://github.com/l
mco/parselab

python Apache v2.0

Descrip�on parseLab is a modular framework to generate protocol parsers, fuzz
protocol messages and provide capability for building custom
protocol parser generators

Trail of Bits

Tool Name URL Pla�orm or Deps License

PolyTracker htps://github.com/tr
ailo�its/polytracker

Linux Apache v2.0

Descrip�on PolyTracker is a general purpose tool that adds instrumenta�on to
programs at compile �me to track all data flows through execu�on. It
can map all input bytes to the program outputs they influence.
PolyTracker’s data flow analysis has been used to automa�cally detect
parser bugs and differen�als.

Tool Name URL Pla�orm or Deps License

PolyFile htps://github.com/tr
ailo�its/polyfile

Python 3 (cross-
pla�orm)

Apache v2.0

Descrip�on PolyFile is a file format iden�fica�on and explora�on tool. It is a drop-
in replacement for libmagic's file command and can also emit an
interac�ve file explorer.

https://github.com/SRI-CSL/safedocs-recognizer
https://github.com/SRI-CSL/safedocs-recognizer
https://github.com/SRI-CSL/safedocs-recognizer
https://github.com/lmco/parselab
https://github.com/lmco/parselab
https://github.com/trailofbits/polytracker
https://github.com/trailofbits/polytracker
https://github.com/trailofbits/polyfile
https://github.com/trailofbits/polyfile

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name URL Pla�orm or Deps License

Graphtage htps://github.com/tr
ailo�its/graphtage

Python 3 (cross-
pla�orm)

GNU Lesser General
Public License

Descrip�on Graphtage is a command-line u�lity and underlying library for
seman�cally comparing and merging tree-like structures, such as
JSON, XML, HTML, YAML, plist, and CSS files. It allows a human to
quickly determine the minute differences between large files.

Tool Name URL Pla�orm or Deps License

Fickling htps://github.com/tr
ailo�its/fickling

Python 3 (cross-
pla�orm)

GNU Lesser General
Public License

Descrip�on Fickling is a decompiler, sta�c analyzer, and bytecode rewriter for
Python pickle object serializa�ons, o�en used to encode Machine
Learning model files. Fickling can take pickled data streams and
decompile them into human-readable Python code that, when
executed, will deserialize to the original serialized object. It can also
detect malicious pickle files, as well as inject code into exis�ng
pickles.

https://github.com/trailofbits/graphtage
https://github.com/trailofbits/graphtage
https://github.com/trailofbits/fickling
https://github.com/trailofbits/fickling

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Kudu Dynamics / LevelUp Research

Tool Name URL Pla�orm or Deps License

SPARCLUR htps://github.com/le
velupresearch/sparcl
ur

Python 3 (cross-
pla�orm),
Arlington DOM,
Checker,
Ghostscript,
MuPDF,
PDFCPU,
PDFium,
PDFMiner,
Poppler,
QPDF,
XPDF,

GNU Lesser General
Public License

Descrip�on SPARCLUR (Sparclur) is a collection of various wrappers for
extant PDF parsers and/or renderers along with accompanying
tools for comparing and analyzing the outputs from these
parsers.

Northrop Grumman

Tool Name URL Pla�orm or Deps License

SafeDocs API N/A Cross Pla�orm with Java,
Java (12),
Docker (24),
MongoDB (3.12.11),
Spring Boot (2.7.3),
JeroMQ (0.5.2),
Springfox Boot (3.0.0),
Junit Jupiter (5.9.2),
Apache Common Cli (1.5.0),
Jacoco (0.8.8)

Owned by SafeDocs

Descrip�on SafeDocs API manages the SafeDocs tools, database, and exposes htp
endpoint that serve as CLI endpoints, endpoints for the user interface,
and any other client that wishes to interact with the SafeDocs tools.

https://github.com/levelupresearch/sparclur
https://github.com/levelupresearch/sparclur
https://github.com/levelupresearch/sparclur

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name URL Pla�orm or Deps License

SafeDocs UI N/A Cross Pla�orm with any modern
browser (Firefox, Chrome)
emo�on/react: 11.9.0,
emo�on/styled: 11.8.1,
mui/icons-material: 5.6.0,
mui/material: 5.6.0,
mui/x-data-grid: 5.12.0,
tes�ng-library/jest-dom: 5.16.3,
tes�ng-library/react: 12.1.5,
axios: 0.26.1,
ramda: 0.28.0,
react: 18.0.0,
react-dom: 18.0.0,
react-hook-form: 7.29.0,
react-redux: 7.2.8,
react-scripts: 5.0.0,
web-vitals: 2.1.4
babel/core: 7.20.12,
babel/plugin-syntax-jsx: 7.18.6,
babel/preset-env: 7.20.2,
babel/preset-react: 7.18.6,
tes�ng-library/user-event:
14.4.3,
babel-jest: 29.4.1,
babel-preset-jest: 29.4.2,
cross-env: 7.0.3,
jest: 29.4.3,
react-docgen: 5.4.3,
react-docgen-markdown-
renderer: 2.1.3,
react-test-renderer: 18.2.0,
ts-jest: 29.0.5

Owned by SafeDocs

Descrip�on SafeDocs UI serves the User Interface to the tool’s operator; allowing
the operator to select one of the many tools developed for SafeDocs,
providing an interface to upload input files and manages the output
files by providing filtering and searching capabili�es.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

American University

Tool Name URL Pla�orm or Deps License

Dowker tools for
sta�s�cal inference

htps://github.com/kb1dds
/dowker_sta�s�cs

R >= 3.4,
�dyverse

Apache 2.0

Descrip�on Tools for inferring cluster iden�ty using mul�-variate Boolean random
variables.

Tool Name URL Pla�orm or Deps License

Python code for
topological analysis
of (mathema�cal)
rela�ons.

htps://github.com/kpewin
g/rela�ons

Python >= 3.0,
numpy

Apache 2.0

Descrip�on Topological distance between two mathema�cal rela�ons, represented
by binary matrices showing which objects (columns) exhibit which
features (rows), can be defined in terms of the number of changes
required to transform one matrix into the other and vice versa,
somewhat like the Hamming distance for strings.

Tool Name URL Pla�orm or Deps License

Sta�s�cal hypothesis
tests for exploring
rela�onal data

htps://github.com/kb1d
ds/rela�on_stats

Python >= 3.0,
numpy

Apache 2.0

Descrip�on This repository contains two Jupyter notebooks and two standalone
Python command line tools to examine the structure of a binary
rela�on

https://github.com/kb1dds/dowker_statistics
https://github.com/kb1dds/dowker_statistics
https://github.com/kpewing/relations
https://github.com/kpewing/relations
https://github.com/kb1dds/relation_stats
https://github.com/kb1dds/relation_stats

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

BAE Systems

Tool Name URL Pla�orm or Deps License

VALARIN file classifier
framework for
Curator

N/A Linux,
Docker engine>=23.01,
Docker-compose >= 2.15,
Python3 virtual environment,
numpy==1.25.1,
pandas==2.0.3,
PyYAML==6.0.1,
requests==2.31.0

Proprietary

Descrip�on The format-independent VALARIN framework integrates diverse
parsers to detect poten�ally malicious files as part of Curator, the
Na�onal Geospa�al Intelligence Agency’s file intake pipeline.

	Executive summary
	Background
	Best practices
	SOSA Alignment
	Supporting technologies
	Programmer resources for describing data formats and auto-generating parsing code
	Tools for understanding document collections and format rules
	Tools to understand behavior of existing parser code
	Resources for the Portable Document Format (PDF)
	Tools to secure Python’s data format overwhelmingly used in Artificial Intelligence research

	Insufficiency and anti-patterns of current approaches
	Appendix
	SafeDocs DDLs, their outputs and their dependencies
	SafeDocs performer tools and integrations
	SRI International
	Lockheed Martin Advanced Technology Laboratories
	Trail of Bits
	Kudu Dynamics / LevelUp Research
	Northrop Grumman

