DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Best Practices for Secure Data Intake, Data Modeling,
and Data Design

Learnings from the Safe Documents (SafeDocs) Program

Sergey Bratus

Defense Advanced Research Projects Agency/Information Innovation Office (DARPA/120)

Executive summary

Design and implementation errors in software that receives and validates electronic data lead to
vulnerabilities that may lead to mission failure. To reduce risk to the mission, electronic data
formats MUST be modeled down to the wire format level, and the software code that ingests
and validates data SHOULD be automatically generated from such models.

Background

Data objects. Sensor Open Systems Architecture (SOSA) software and hardware components
send and receive data in the form of electronic messages and streams. These messages consist
of data objects from the SOSA data models and of auxiliary data (a.k.a. metadata?) used to
encode these objects into strings of bits and bytes (e.g., for on the wire transmission or
storage), and to authenticate and configure components and connections. Examples of auxiliary
data include codes for types and subtypes of messages, lengths of variable-length fields of data
structures representing objects, encoded cryptographic credentials such as keys, and so on.

Data relationships. Typically, certain relationships are expected to hold between the data
objects themselves and between the data objects and the associated auxiliary data. For
example, an object representing a relative time value must be preceded by another object that
represents an absolute time value. As another example, the actual length of an encoded
variable-length value must correspond to the element(s) that describe the lengths of that value
(if any) and of objects enclosing that encoded value in their own encoding, the sum of the
lengths of parts should be less or equal to the length of the whole, and so on. As a general rule,
when two or more elements of auxiliary data affect the processing of the message, their values
must agree so as not to result in conflicting interpretations of the same message.

1 Although metadata is sometimes misunderstood to imply that it doesn't need to be formally modelled or
checked, this is a dangerous misconception. At some point some code will interact with the supposedly passive
metadata (even just attempting to display it)—and will get exploited by it! Log4Shell and various Unicode injection
attacks forcefully demonstrate that "metadata” is still "data" and needs to undergo the same thorough validation
as any other data.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Vulnerabilities of data intake. To be transmitted over the wire or air, data objects are converted
to sequences of bits or bytes, i.e., serialized by the sending component. Receiving software
interprets the serialized representation to reconstruct the data objects and must validate any
relationships that may be assumed by subsequent software code processing these objects.
Failure to validate expected relationships typically leads to vulnerabilities. For example, the code
that attempts to (re)construct the absolute time stamp from a relative one may scan the
message backwards for a preceding absolute time value and would fail if no such value is found,
leaving the computation in an invalid state. When declared lengths of encoded fields disagree,
e.g., an inner object is larger than the outer object, it attempts to allocate memory based on the
outer object's supposed length and then fills that memory with the decoded content of the
inner object which may lead to overwriting memory allocated to other objects, a.k.a. memory
corruption, and so on. When two conflicting auxiliary data descriptions of an object's size or
content are possible, different components of the system may end up unwittingly implementing
these conflicting interpretations, leading to inconsistent global state of the system. All of these
errors are known to have led to critical vulnerabilities, including the infamous Heartbleed.

Best practices

The code that reconstructs and validates incoming data should be generated from a machine-
readable (a.k.a. mechanized) model of the data that declaratively describes both the structure
of objects and their relationships and extends to the wire-level encoding of these objects and

related auxiliary data.

Low-complexity, interoperable data format definitions and data models. Data format design
should pay close attention to parsing complexity and interoperability while supporting a formal
semantics. The data format must avoid vulnerabilities induced by complex parsing rules that
compromise the earlier recommendation for strict validation of input data before any
application processing. Interoperability across different implementations of the same format
version and across different format versions is improved by “virtuous intolerance” (RFC 9413)
where all deviations from the specification are treated as fatal. Data models must formalize the
structure and invariants reflected in the data format definition.

Models must cover wire format. The mechanized model MUST refine the physical data model
down to the wire format, i.e., to the bit-level representations of objects and metadata. This
refinement is needed to preclude ambiguity of interpretation and resulting vulnerability-
inducing implementation disagreements and to avoid data corruption errors while
reconstructing the objects.

Models must cover data dependencies and relationships. The mechanized model MUST
declare all relationships between different data objects, auxiliary data, and metadata?. This is
necessary to ensure that no assumed but actually unvalidated data property is acted on by

2 A relationship that is assumed but not checked will be acted on at some point by some code—and will likely help
exploit that code. Also, the same caution about metadata as described in footnote 1 applies.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

subsequent code, leading to inconsistent state, data corruption, or vulnerability. Since
relationships in multi-value data formats are typically complex, enumerating their complete set
is key to assuring that all are checked correctly by the implementation.

Data intake code should be auto-generated from models. The implementation code SHOULD
be automatically generated from the mechanized model. The generator should produce the
code that provably, correctly, and completely implements the structure and relationship
validation checks. This is necessary for both complex protocols and messages, and for seemingly
simple ones, as examples of vulnerabilities resulting from forgotten or mis-implemented checks
abound for both kinds. Moreover, automatic generation of data structures from serialized input
enables automatic consistency checks between sending and receiving applications to use
models rather than code, which will considerably simplify these consistency checks and enable
faster and more assured integration.

SOSA Alignment

The above best practices significantly improve the quality attributes of interoperability and
securability of SOSA components.

Interoperability: Mechanized data models assure equivalent interpretation of all messages by
all SOSA sensor components that deploy code automatically generated from these models. This
avoids a common and often critical failure mode in which interpretations of the same data
diverge among components of the system.

Moreover, equivalent interpretation of complex messages by independently developed parsers
tends to be among the hardest properties to test for and certify conformance. Deploying
automatically generated code across components will reduce the effort needed for testing,
certification, and integration.

Securability: Mechanized data models with unambiguous and complete descriptions of validity
enable checking and filtering of incoming data for well-defined properties at well-defined
interfaces or architectural insertion points. This system property is essential for securability of
the overall system in multiple scenarios, including triage of vulnerabilities and response to
changing operating conditions, wherein certain messages can be blocked due to threats.

Zero Trust: Mechanized data models are essential for assuring zero trust properties of
components and systems since authentication---essential to zero trust---can only happen after
incoming messages are deserialized and authentication credentials such as cryptographic tokens
are extracted from them. Vulnerabilities in deserialization code thus, can be exploited before
authentication can happen and the malicious message's contents or commands can be
discarded as unauthenticated or unauthorized. This makes exploitation of these vulnerabilities,
known as pre-authentication vulnerabilities, particularly devastating.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Pre-authentication vulnerabilities destroy zero trust properties. Automatically generating pre-
authentication code from mechanized data models of authenticating data mitigates the risk of
pre-authentication exploits.

In addition to pre-authentication vulnerabilities, there is another existential threat for zero
trust: chain-of-trust parsing vulnerabilities. This class of vulnerability lurks wherever
cryptographically signed data objects must be processed in a well-defined order (“chain”) to
extend trust to the document or message, and further validation is based on processing of
previously interpreted data. Any deviations from the order of processing or any disagreements
about which objects or spans of data are covered by previously checked cryptographic
credentials destroy the chain and the trust. Unambiguously defining the order, the objects and
the coverage mitigates this existential risk.

Acquisition: In addition to the technical alignment of the best practices with SOSA, there is a
solid business case to be made. The SOSA Acquisition and Contracting Guide outlines the
business case for SOSA and includes the following acquisition goals:

Reduced acquisition cycle time and overall life-cycle cost
Ability to insert cutting edge technology as it evolves
Commonality and reuse of components among systems
Increased ability to leverage commercial investment

PwwnNpE

Following the best practices above is in fact crucial for achieving these business and acquisition
goals. In particular, mechanized data models have already been shown to aid in all four of these
acquisition goals, and the supporting technologies developed in the SafeDocs program are
already showing their promise for both existing and under-development SOSA data formats.

Supporting technologies

DARPA's SafeDocs program developed several Data Description Languages (DDLs) for creating
and refining mechanized models of incoming data. These DDLs are accompanied by
environments and tools to help write, "debug", and test models in DDL and to generate input
handling and input filtering code from these models.

The common capability of these models is to describe the structure of data objects, their
representations down to the wire format, and—crucially for validation and assurance—of their
mutual dependencies and relationships. The DDLs vary in style and primitives of their modeling
approaches, to accommodate a wide variety of developer experiences. The supporting tools
also vary in the software dependencies they require.

For example, the Hammer toolkit is built around a standard C library and requires no additional

dependencies beyond a typical C/C++ build chain. Hammer also offers bindings that allow it to
be used from Python, Java, .Net, and other popular languages. The DaeDalus and Parsley kits

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

provide stronger guarantees at the cost of requiring additional dependencies such as Haskell
and the PVS proof and reasoning system. See table 1 in the appendix.

The following tools can help software developers and cybersecurity/privacy researchers
improve their organization’s security posture in handling electronic documents. These range in
functionality and specificity for a variety of uses. Check each description and click on the tool’s
links for additional information.

Programmer resources for describing data formats and auto-generating parsing code

DaeDalus: Data description language for defining data formats and generating memory-
safe parsers in a variety of languages.

Hammer: Declarative secure parser/scanner construction kit in C, based on the parser
combinator approach but requiring no additional dependencies beyond the Hammer C
library.

Parsley: Data description language that combines grammars and constraints in a
modular way to capture data formats such as MAVLink, PDF and Executable and Linking
Format (ELF).

PVS/PVS2C: Interactive proof assistant with C code extraction for defining efficient, correct-by-
construction parsers and independent proof-of-parse verifiers.

Tools for understanding document collections and format rules

File Observatory: System to enable visualization, search, and discovery of complex file

format patterns and data.

Format Analysis Workbench: Platform for running and analyzing the output from any
number of parsers dealing with a single file or streaming format. It is a workbench for
developing and applying tools that aid in understanding the de facto formats which
naturally emerge from open standards.

Dowker tools for statistical inference of file format behaviors: Provides the ability to
classify file behaviors against an arbitrary number of Boolean features to help
developers focus into unusual or interesting behaviors. A demonstration video is
available at https://www.youtube.com/watch?v=i3wl2jdIZv8.

PolyFile: A utility to identify and map the semantic structure of files, including polyglots,
chimeras, and the so-called “schizophrenic” files that appear differently to different
software readers. It can be used in conjunction with its sister tool PolyTracker for
Automated Lexical Annotation and Navigation of Parsers, a backronym devised solely for
the purpose of collectively referring to the tools as The ALAN Parsers Project.

Tools to understand behavior of existing parser code

PolyTracker: A general-purpose tool for efficiently performing data-flow and control-
flow analysis of programs. It is a LLVM pass that instruments programs to track which
bytes of an input file are operated on by which functions. It outputs a database
containing the data-flow information, as well as a runtime trace. PolyTracker also

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://github.com/GaloisInc/daedalus
https://gitlab.special-circumstanc.es/hammer/hammer
http://spw20.langsec.org/papers/parsley-langsec2020.pdf
https://github.com/jpl-safedocs
https://github.com/GaloisInc/FAW
https://github.com/kb1dds/dowker_statistics
https://www.youtube.com/watch?v=i3wl2jdIZv8
https://github.com/trailofbits/polyfile
https://github.com/trailofbits/polytracker

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

provides a Python library for interacting with and analyzing its output, as well as an
interactive Python REPL.

e Graphtage: Command-line utility and underlying library for semantically comparing and
merging tree-like structures, such as JSON, XML, HTML, YAML, Property List (Plist), and
CSS files.

Resources for the Portable Document Format (PDF)

e Arlington PDF Model: Named after the city in which DARPA is located, provides an
authoritative and comprehensive document object model for PDF, facilitating
enhancements to security and driving new modalities in specification development.

e Digital Corpora Project Corpus: Approximately eight million real-world PDFs available
for research, testing, and evaluation.

e SPARCLUR: A collection of various wrappers for extant PDF parsers and/or renderers
along with accompanying tools for comparing and analyzing the outputs from these
parsers.

Tools to secure Python’s data format overwhelmingly used in Artificial Intelligence
research

e Fickling: Decompiler, static analyzer, and bytecode rewriter for Python pickle object
serializations.

SafeDocs also developed tools for integrating DDLs with VisualCode and Emacs editors, as well
as with Visual Studio. SafeDocs developed visual debugging tools for data formats such as
PolyFile and Format Analysis Workbench (FAW), and tracing tools for parsers, such as
PolyTracker. See appendix table 2 for additional SafeDocs tool information.

Insufficiency and anti-patterns of current approaches

Experience shows that today's approaches are insufficient to eliminate vulnerabilities in code
that handle data intake. This insufficiency is due to a combination of weaknesses in existing best
practices and persistence of design and implementation anti-patterns that should be avoided.

Hand-coding of data intake code should be avoided. First and foremost, hand-coding of
parsers, deserializers, and validators of untrusted input data—i.e., potentially crafted,
manipulated, or malicious data—should be avoided. This is especially true for languages
without memory safety guarantees such as C and C++, because any memory operation that
involves values derived from untrusted input may result in memory corruption when based on
an unchecked assumption about input. For example, allocating memory based on a size value
computed from the inputs may result in allocating insufficient space for a subsequent series of
writes to that memory, resulting in overwriting and corrupting unrelated data in neighboring
memory. That corrupted data may then be accessed by other code that does not expect it to be
corrupted, compounding the unintended execution effects. Even reading data based on values
derived from input may result in a vulnerability: unrelated data may be read and then included
in outgoing messages, as was the case with the infamous Heartbleed vulnerability.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://github.com/trailofbits/graphtage
https://www.pdfa.org/presentation/the-arlington-pdf-model/
https://www.youtube.com/watch?v=ELAFymRYV30
https://downloads.digitalcorpora.org/corpora/files/CC-MAIN-2021-31-PDF-UNTRUNCATED/
https://pypi.org/project/sparclur/
https://github.com/trailofbits/fickling

Simply put, hand-written parsing code should be deprecated in high assurance systems.

“Input sanitization” is an anti-pattern for high assurance systems. The practice of scanning
inputs for known problematic bit or byte sequences and automatically changing these inputs
into forms presumed benign, is, in fact, an anti-pattern that should be avoided. This practice,
known as input sanitization, may be occasionally effective against known attacks by disrupting
their payloads or injection mechanisms, but is also known to be both bypassed by attackers or
even leveraged to turn benign inputs into malicious ones. This is because validity of a complex
input is typically the property of an entire message rather than a property of a few easily
recognizable "pathogen" bytes that can be checked locally without regard for the larger
message context.

Simply put, the "sanitization" practice of spot checks and "fixes" based on partial scanning of
complex messages should be avoided in high assurance systems.

Intermixing data intake checks and data processing leads to errors. Many current
implementations of complex protocols intermix input-checking and application logic, introduces
confusion and errors. It is often not clear at most points in the code which assumptions about
the data relationships are checked and which are yet to be checked, which results in acting on
yet unchecked assumptions and exploitation.

In particular, specifications of application protocols tend to come with tables that specify data
field sizes and expected value types in machine-readable forms, but use English natural
language statements to describe the interdependencies and relationships between these fields.
The expectation is that some of the initial input-handling code can be automatically generated
from the tables, whereas the rest of the English-described relationships will be checked by the
custom application logic. In short, checking of the more advanced relationships is postponed
until the data contents extracted from inputs actually begin driving the application—i.e., when
it is too late to defend the application logic.

Simply put, purely syntactic checking of data that postpones the checking of object
dependencies and relationships until the data is acted upon and intermixes checking with the
application logic is not sufficient for high assurance systems.

Finally, without a complete and unambiguous machine-readable model of input data,
automated checking of the manually produced code for errors is incomplete and inefficient,
even for seemingly simple wire formats. Although automatic analysis of code is desirable, it is
either ineffective or inefficient without a mechanized model, because analyses of this code must
guess which properties are desired and which are incidental to or emergent from an
implementation. When expectations of object/value properties and relationships between
objects and values are not mechanized, they cannot be checked exhaustively. An expectation
that is acted upon but not actually checked is liable to introduce memory corruptions,
overflows, and other unintended behaviors. Without a complete and unambiguous description

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

of expectations, automatic checking is reduced to either heuristically looking for known coding
mistakes and misses more complex conditions.

Simply put, neither static (e.g., "linting") nor dynamic (e.q., "fuzzing") automated analyses are
sufficient for high assurance systems and should not be used as a sole basis of trust in that code.

Contrast this with code automatically generated from declarative descriptions of desired and
expected data format structure and relationships, where the desired properties are explicit at
every point. Indeed, non-declarative manually coded data validity logic should be replaced
with declarative-based automatically generated code.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Appendix
SafeDocs DDLs, their outputs and their dependencies
DDL Output Dependencies
DaeDalus | Parsers in C++ or Haskell GHC 9.4.5 and a Hsskell package manager
(e.g., Cabal 3.6). Offline install available with
no dependencies.
Hammer Parsers in C, C++, Python, Ruby, | SCons
Perl, Go, PHP, .NET
Parseley An interpreter in OCaml OCaml 4.11.1 or later and Opam 2.0 or later.

SafeDocs performer tools and integrations

SRI International

Tool Name URL Platform or Deps License

Hashashin https://github.com/ri | python, BinaryNinja MIT
verloopsec/hashashin

Description “Hashashin leverages IL based fuzzy hashing techniques to generate a
compiler/architecture agnostic fingerprint which can be used for
identifying the source of an unknown binary.”

Tool Name URL Platform or Deps License

Data-iop Analyzer N/A eBPF, awk, strace Proprietary

Description

The data-iop Analyzer is a part of Narf’s PolyDocPoC tool that uses the
“bpftrace’ tool to derive a dynamic trace of the “data I/O protocol”:
the format-relevant I/O behavior of a PDF parser. It also includes a
post-processing tool for strace-derived system call traces that models
the state of major sequences of PDF operations, such as profiles of
memory buffer use and gaps (unread bytes) in files.”

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://github.com/riverloopsec/hashashin
https://github.com/riverloopsec/hashashin

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name

URL

Platform or Deps

License

PolyDocPoc & Sir-

N/A

Polyswarm network,

Proprietary

Parse-a-Lot python, Docker

Description These tools are parser instrumentation frameworks that apply a set of
Analyzers to data from the PolySwarm threat intelligence artifact
network to conduct format-based detection of malware in complex
files.

Tool Name URL Platform or Deps License

MEOW suite https://github.com/S | Intel Pin MIT
RI-CSL/safedocs-
meow

Description “MEOQOW is a tool for format-aware tracing of memory events based on
Intel Pin”

Tool Name URL Platform or Deps License

NITF KaiTai Struct https://formats.kaitai | Minimal KaiTai Struct | MIT

grammar .io/nitf/index.html v0.8

Description “NITF KaiTai Struct grammar defines an open source KaiTai spec
utilized for parsing NITF files"

Tool Name URL Platform or Deps License

NITF Mutator N/A python MIT

Description

“Library for manipulating NITF files used to evaluate NITF parsers”

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://github.com/SRI-CSL/safedocs-meow
https://github.com/SRI-CSL/safedocs-meow
https://github.com/SRI-CSL/safedocs-meow
https://formats.kaitai.io/nitf/index.html
https://formats.kaitai.io/nitf/index.html

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name URL Platform or Deps License

SRI Recognizer https://github.com/S | Go, python, Docker, MIT
RI-CSL/safedocs- Shell
recognizer

Description “DARPA SafeDocs software suite to bundle and orchestrate various
format-aware tracing tools.”

Lockheed Martin Advanced Technology Laboratories

Tool Name URL Platform or Deps License

parselLab https://github.com/| | python Apache v2.0
mco/parselab

Description parselab is a modular framework to generate protocol parsers, fuzz

protocol messages and provide capability for building custom
protocol parser generators

Trail of Bits

Tool Name URL Platform or Deps License

PolyTracker https://github.com/tr | Linux Apache v2.0
ailofbits/polytracker

Description PolyTracker is a general purpose tool that adds instrumentation to
programs at compile time to track all data flows through execution. It
can map all input bytes to the program outputs they influence.
PolyTracker’s data flow analysis has been used to automatically detect
parser bugs and differentials.

Tool Name URL Platform or Deps License

PolyFile https://github.com/tr | Python 3 (cross- Apache v2.0
ailofbits/polyfile platform)

Description PolyFile is a file format identification and exploration tool. It is a drop-

in replacement for libmagic's file command and can also emit an
interactive file explorer.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://github.com/SRI-CSL/safedocs-recognizer
https://github.com/SRI-CSL/safedocs-recognizer
https://github.com/SRI-CSL/safedocs-recognizer
https://github.com/lmco/parselab
https://github.com/lmco/parselab
https://github.com/trailofbits/polytracker
https://github.com/trailofbits/polytracker
https://github.com/trailofbits/polyfile
https://github.com/trailofbits/polyfile

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name URL Platform or Deps License

Graphtage https://github.com/tr | Python 3 (cross- GNU Lesser General
ailofbits/graphtage platform) Public License

Description Graphtage is a command-line utility and underlying library for

semantically comparing and merging tree-like structures, such as
JSON, XML, HTML, YAML, plist, and CSS files. It allows a human to
quickly determine the minute differences between large files.

Tool Name URL Platform or Deps License

Fickling https://github.com/tr | Python 3 (cross- GNU Lesser General
ailofbits/fickling platform) Public License

Description Fickling is a decompiler, static analyzer, and bytecode rewriter for

Python pickle object serializations, often used to encode Machine
Learning model files. Fickling can take pickled data streams and
decompile them into human-readable Python code that, when
executed, will deserialize to the original serialized object. It can also
detect malicious pickle files, as well as inject code into existing
pickles.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://github.com/trailofbits/graphtage
https://github.com/trailofbits/graphtage
https://github.com/trailofbits/fickling
https://github.com/trailofbits/fickling

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Kudu Dynamics / LevelUp Research

Tool Name

URL

Platform or Deps

License

SPARCLUR

https://github.com/le | Python 3 (cross-

velupresearch/sparcl | platform),

ur

Arlington DOM,
Checker,
Ghostscript,
MuPDF,
PDFCPU,
PDFium,
PDFMiner,
Poppler,

QPDF,

XPDF,

GNU Lesser General
Public License

Description

SPARCLUR (Sparclur) is a collection of various wrappers for
extant PDF parsers and/or renderers along with accompanying
tools for comparing and analyzing the outputs from these

parsers.

Northrop Grumman

Tool Name

URL

Platform or Deps

License

SafeDocs API

N/A

Cross Platform with Java,
Java (12),

Docker (24),

MongoDB (3.12.11),

Spring Boot (2.7.3),
JeroMQ (0.5.2),

Springfox Boot (3.0.0),
Junit Jupiter (5.9.2),
Apache Common Cli (1.5.0),
Jacoco (0.8.8)

Owned by SafeDocs

Description

SafeDocs APl manages the SafeDocs tools, database, and exposes http
endpoint that serve as CLI endpoints, endpoints for the user interface,
and any other client that wishes to interact with the SafeDocs tools.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://github.com/levelupresearch/sparclur
https://github.com/levelupresearch/sparclur
https://github.com/levelupresearch/sparclur

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name

URL

Platform or Deps

License

SafeDocs Ul

N/A

Cross Platform with any modern
browser (Firefox, Chrome)
emotion/react: 11.9.0,
emotion/styled: 11.8.1,
mui/icons-material: 5.6.0,
mui/material: 5.6.0,
mui/x-data-grid: 5.12.0,
testing-library/jest-dom: 5.16.3,
testing-library/react: 12.1.5,
axios: 0.26.1,

ramda: 0.28.0,

react: 18.0.0,

react-dom: 18.0.0,
react-hook-form: 7.29.0,
react-redux: 7.2.8,
react-scripts: 5.0.0,
web-vitals: 2.1.4
babel/core: 7.20.12,
babel/plugin-syntax-jsx: 7.18.6,
babel/preset-env: 7.20.2,
babel/preset-react: 7.18.6,
testing-library/user-event:
14.4.3,

babel-jest: 29.4.1,
babel-preset-jest: 29.4.2,
cross-env: 7.0.3,

jest: 29.4.3,

react-docgen: 5.4.3,
react-docgen-markdown-
renderer: 2.1.3,
react-test-renderer: 18.2.0,
ts-jest: 29.0.5

Owned by SafeDocs

Description

SafeDocs Ul serves the User Interface to the tool’s operator; allowing
the operator to select one of the many tools developed for SafeDocs,
providing an interface to upload input files and manages the output
files by providing filtering and searching capabilities.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

American University

Tool Name URL Platform or Deps | License

Dowker tools for https://github.com/kbldds | R >= 3.4, Apache 2.0

statistical inference | /dowker statistics tidyverse

Description Tools for inferring cluster identity using multi-variate Boolean random
variables.

Tool Name URL Platform or Deps | License

Python code for
topological analysis
of (mathematical)
relations.

https://github.com/kpewin | Python >= 3.0, Apache 2.0
g/relations numpy

Description

Topological distance between two mathematical relations, represented
by binary matrices showing which objects (columns) exhibit which
features (rows), can be defined in terms of the number of changes
required to transform one matrix into the other and vice versa,
somewhat like the Hamming distance for strings.

Tool Name

URL Platform or Deps | License

Statistical hypothesis
tests for exploring
relational data

https://github.com/kb1d | Python >=3.0, Apache 2.0
ds/relation_stats numpy

Description

This repository contains two Jupyter notebooks and two standalone
Python command line tools to examine the structure of a binary
relation

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

https://github.com/kb1dds/dowker_statistics
https://github.com/kb1dds/dowker_statistics
https://github.com/kpewing/relations
https://github.com/kpewing/relations
https://github.com/kb1dds/relation_stats
https://github.com/kb1dds/relation_stats

BAE Systems

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Tool Name

URL

Platform or Deps

License

VALARIN file classifier | N/A

framework for
Curator

Linux,

Docker engine>=23.01,
Docker-compose >=2.15,
Python3 virtual environment,
numpy==1.25.1,
pandas==2.0.3,
PYYAML==6.0.1,
requests==2.31.0

Proprietary

Description

The format-independent VALARIN framework integrates diverse
parsers to detect potentially malicious files as part of Curator, the
National Geospatial Intelligence Agency’s file intake pipeline.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

	Executive summary
	Background
	Best practices
	SOSA Alignment
	Supporting technologies
	Programmer resources for describing data formats and auto-generating parsing code
	Tools for understanding document collections and format rules
	Tools to understand behavior of existing parser code
	Resources for the Portable Document Format (PDF)
	Tools to secure Python’s data format overwhelmingly used in Artificial Intelligence research

	Insufficiency and anti-patterns of current approaches
	Appendix
	SafeDocs DDLs, their outputs and their dependencies
	SafeDocs performer tools and integrations
	SRI International
	Lockheed Martin Advanced Technology Laboratories
	Trail of Bits
	Kudu Dynamics / LevelUp Research
	Northrop Grumman

