Explore by Tag
Explore by Tag
X
  • Access
  • Adaptability
  • Administration
  • Agency
  • AI
  • Air
  • Algorithms
  • Analytics
  • Automation
  • Autonomy
  • Bio-complexity
  • Bio-systems
  • BMC2
  • CBRN
  • Chemistry
  • Communications
  • Complexity
  • Contracts
  • Cost
  • Countermeasures
  • Cyber
  • Data
  • Decentralization
  • Disease
  • Electronics
  • Energy
  • Events
  • EW
  • Finance
  • Forecasting
  • Formal
  • Fundamentals
  • Games
  • Globalization
  • Ground
  • Health
  • History
  • Imagery
  • Injury
  • Integration
  • Interface
  • ISR
  • Language
  • Launch
  • Leadership
  • Logistics
  • Manufacturing
  • Maritime
  • Materials
  • Math
  • Med-Devices
  • Microchips
  • Microstructures
  • Microsystems
  • Mobile
  • Munitions
  • Networking
  • Neuroscience
  • Opportunities
  • Photonics
  • PNT
  • Policy
  • Privacy
  • Processing
  • Programming
  • Quantum
  • Resilience
  • Restoration
  • Robotics
  • Satellites
  • SBIR
  • Security
  • Sensors
  • Space
  • Spectroscopy
  • Spectrum
  • SWAP
  • Syn-Bio
  • Systems
  • Targeting
  • Tech-Foundations
  • Testimony
  • Therapy
  • Thermal
  • Training
  • Transition
  • Trust
  • Unmanned
  • Visualization
Defense Advanced
Research Projects Agency
Main Menu
X
  • About Us
    • About DARPA
    • People
    • Offices
    • Innovation Timeline
    • Testimony
    • Budget
    • Image Gallery
  • /
  • Our Research
  • /
  • News
  • /
  • Events
  • /
  • Work With Us
    • Opportunities
    • New Program Managers
    • Contract Management
    • For Industry
    • For Small Businesses
    • For Universities
    • For Government and Military
    • Employment at DARPA
    • Visitor Information
  • /
  • Search
Main Menu Explore by Tag
Defense Advanced Research Projects AgencyProgram Information

THz Electronics

Dr. Timothy Hancock

Terahertz (THz) Electronics

Imaging, radar, spectroscopy, and communications systems that operate in the millimeter-wave (MMW) and sub-MMW bands of the electromagnetic spectrum have been difficult to develop because of technical challenges associated with generating, detecting, processing and radiating the high-frequency signals associated with these wavelengths. To control and manipulate radiation in this especially challenging portion of the RF spectrum, new electronic devices must be developed that can operate at frequencies above one Terahertz (THz), or one trillion cycles per second.

Those higher frequencies are useful: they can carry more information than lower frequency signals and can open up new options in such arenas as secure communications and explosives detection. Until recently, however, limitations in transistor performance made it impossible to reliably drive solid-state electronics directly at these frequencies. Instead, engineers have relied on techniques for converting lower and more easily generated frequencies in chips to the higher ones associated with the sub-MMW range, which begins at frequencies above 300 GHz. But the devices required for that approach are larger and heavier than would be ideal and operate at lower power and with noisier outputs than desired—traits that have precluded widespread exploitation of the sub-MMW band.

To fully exploit the sub-MMW band will require monolithic microwave integrated circuits (MMICs) that can operate up to THz frequencies. And to make these THz MMICs (or “TMICs”) will require THz transistors with maximum oscillation frequencies (fmax) well above 1 THz. The objective of the Terahertz (THz) Electronics program is to develop the critical device and integration technologies necessary to realize compact, high-performance electronic circuits that operate at center frequencies exceeding 1.0 THz.

The program is focused on two critical THz technical areas, one of them well underway:

  1. Terahertz Transistor Electronics. This part of the program has aggressively developed multi-THz Indium Phosphide-based transistors (heterojunction bipolar transistors, or HBTs, and High Electron Mobility Transistors, or HEMTs) and has demonstrated TMICs operating up to and above 1 THz. In addition, THz low-loss inter-element interconnect and integration technologies have been developed, enabling compact THz transmitter and receiver modules to demonstrate wireless communications at 220 GHz, 670 GHz, and 850 GHz – hundreds of times faster than your cell phone.
  2. Terahertz High Power Amplifier Modules. This part of the program aims to develop compact, micromachined vacuum electronics devices to produce a significant increase of output power at frequencies beyond 1.0 THz and to radiate that energy at an antenna. Already, micromachined traveling wave tube amplifiers (TWTs) operating at 670 GHz and 850 GHz have been built and tested and have produced the highest linear output power available at these frequencies.

Successes in the THz Electronics program could catalyze the development of revolutionary applications by enabling coherent THz processing techniques such as THz imaging systems; sub-MMW, ultra-wideband, ultra-high-capacity communication links; and sub-MMW, single-chip widely-tunable synthesizers for explosive detection spectroscopy.

Tags

| Electronics | Spectrum | SWAP |

 

Similarly    Tagged    Content

Finessing Miniaturized Magnetics into the Microelectronics Mix
DARPA Circuit Achieves Speeds of 1 Trillion Cycles per Second, Earns Guinness World Record
ELASTx Stretches Potential for Future Communications Technologies with Fully Integrated All-Silicon “System on a Chip” Transmitter
Chips meet Tubes: World’s First Terahertz Vacuum Amplifier
World Record Silicon-based Millimeter-wave Power Amplifiers

Images

  • Terahertz (THz) Electronics
    Terahertz (THz) Electronics
  • Terahertz (THz) Electronics
    Terahertz (THz) Electronics
Back To Top

  • Print

 

Selected DARPA Achievements

DARPA collaborated with industry on stealth technology.
DARPA’s Stealth Revolution
In the early days of DARPA’s work on stealth technology, Have Blue, a prototype of what would become the F-117A, first flew successfully in 1977. The success of the F-117A program marked the beginning of the stealth revolution, which has had enormous benefits for national security.
DARPA microelectronics gave rise to today's GPS devices.
Navigation in the Palm of Your Hand
Early GPS receivers were bulky, heavy devices. In 1983, DARPA set out to miniaturize them, leading to a much broader adoption of GPS capability.
First rough conceptual design of the ARPANET.
Paving the Way to the Modern Internet
ARPA research played a central role in launching the Information Revolution. The agency developed and furthered much of the conceptual basis for the ARPANET—prototypical communications network launched nearly half a century ago—and invented the digital protocols that gave birth to the Internet.
  • About Us
  • About DARPA
  • People
  • Offices
  • Innovation Timeline
  • Testimony
  • Budget
  • History list page
  • Image Gallery
  • Our Research
  • Open Catalog
  • News
  • Events
  • Work With Us
  • Opportunities
  • New Program Managers
  • Contract Management
  • For Industry
  • For Small Businesses
  • For Universities
  • For Government and Military
  • Employment at DARPA
  • Site Info
  • Sitemap
  • Cookie Disclaimer
  • Web Policy
  • Privacy Policy
  • Accessibility/Section 508
  • No Fear Act
  • Whistleblower Protection Act
  • Usage Policy
  • DoD Hotline
  • USA.gov
  • /
  • Freedom of Information Act
  • /
  • Privacy and Civil Liberties
  • /
  • Visitor Information
  • /
  • Contact Us
  • Twitter
  • Facebook
  • YouTube
  • Instagram
  • Linked In
  • RSS
Defense Advanced Research Projects Agency 675 North Randolph Street
Arlington, VA 22203-2114
703.526.6630

This is an official U.S. Department of Defense website sponsored by the Defense Advanced Research Projects Agency.

You are now leaving the DARPA.mil website that is under the control and management of DARPA. The appearance of hyperlinks does not constitute endorsement by DARPA of non-U.S. Government sites or the information, products, or services contained therein. Although DARPA may or may not use these sites as additional distribution channels for Department of Defense information, it does not exercise editorial control over all of the information that you may find at these locations. Such links are provided consistent with the stated purpose of this website.


After reading this message, click  to continue immediately.

Go Back