Explore by Tag
Explore by Tag
X
  • Access
  • Adaptability
  • Administration
  • Agency
  • AI
  • Air
  • Algorithms
  • Analytics
  • Automation
  • Autonomy
  • Bio-complexity
  • Bio-systems
  • BMC2
  • CBRN
  • Chemistry
  • Communications
  • Complexity
  • Contracts
  • Cost
  • Countermeasures
  • Cyber
  • Data
  • Decentralization
  • Disease
  • Electronics
  • Energy
  • Events
  • EW
  • Finance
  • Forecasting
  • Formal
  • Fundamentals
  • Games
  • Globalization
  • Ground
  • Health
  • History
  • Imagery
  • Injury
  • Integration
  • Interface
  • ISR
  • Language
  • Launch
  • Leadership
  • Logistics
  • Manufacturing
  • Maritime
  • Materials
  • Math
  • Med-Devices
  • Microchips
  • Microstructures
  • Microsystems
  • Mobile
  • Munitions
  • Networking
  • Neuroscience
  • Opportunities
  • Photonics
  • PNT
  • Policy
  • Privacy
  • Processing
  • Programming
  • Quantum
  • Resilience
  • Restoration
  • Robotics
  • Satellites
  • SBIR
  • Security
  • Sensors
  • Space
  • Spectroscopy
  • Spectrum
  • SWAP
  • Syn-Bio
  • Systems
  • Targeting
  • Tech-Foundations
  • Testimony
  • Therapy
  • Thermal
  • Training
  • Transition
  • Trust
  • Unmanned
  • Visualization
Defense Advanced
Research Projects Agency
Main Menu
X
  • About Us
    • About DARPA
    • People
    • Offices
    • Innovation Timeline
    • Testimony
    • Budget
    • Image Gallery
  • /
  • Our Research
  • /
  • News
  • /
  • Events
  • /
  • Work With Us
    • Opportunities
    • New Program Managers
    • Contract Management
    • For Industry
    • For Small Businesses
    • For Universities
    • For Government and Military
    • Employment at DARPA
    • Visitor Information
  • /
  • Search
Main Menu Explore by Tag
Defense Advanced Research Projects AgencyProgram Information

Rapid Threat Assessment

Dr. Kerri Dugan

The Rapid Threat Assessment (RTA) program aims to provide critical information to speed production of medical countermeasures to protect U.S. forces against novel chemical and biological weapons. Such weapons have historically been mass-produced within a year of discovery. Development of countermeasures, however, currently takes far longer. Using current methods and technologies, researchers require decades of study to gain a cellular-level understanding of how new threat agents exert their effects. This temporal gap between threat emergence, mechanistic understanding, and potential treatment leaves U.S. forces vulnerable, so DARPA launched the RTA program with an aggressive goal for researchers: develop methods and technologies that can, within 30 days of exposure to a human cell, map the complete molecular mechanism through which a threat agent alters cellular processes.

Threat agents, drugs, chemicals, and biologics interfere with normal cell function by interacting with one or more molecules associated with the cell membrane, cytoplasm, or nucleus. Since a human cell may contain up to 30,000 different molecules functioning together in complex, dynamic networks, the molecular mechanism of a given threat agent might involve hundreds of molecules and interactions. RTA performer teams are developing high-throughput tools and methods to detect and identify the cellular components and mechanistic events that take place over a range of times, from the milliseconds immediately following threat agent exposure to the days over which alterations in gene and protein expression might occur. The molecular mechanism must also account for molecular translocations and interactions that cross the cell membrane, cytoplasm, and nucleus.

Rapidly understanding the molecular mechanism of a given threat agent would provide researchers the framework with which to develop novel medical countermeasures and mitigate threats. If RTA is successful, potential adversaries will have to reassess the cost-benefit analysis of using chemical or biological weapons against U.S. forces that have credible medical defenses. Successful RTA technologies would also be readily applicable to drug development and combating emerging diseases. In both cases, detailed knowledge of molecular mechanism would facilitate approval of new drugs by shortening the time needed to evaluate drug efficacy and toxicity.

 

Tags

| Countermeasures | Disease | Health | Spectroscopy | Therapy |

 

Similarly    Tagged    Content

Rapid Threat Assessment Could Mitigate Danger from Chemical and Biological Warfare
Pandemic Prevention Platform (P3) East Coast Proposers Day
Pandemic Prevention Platform (P3) West Coast Proposers Day
PReemptive Expression of Protective Alleles and Response Elements (PREPARE) Proposers Day
A Dose of Inner Strength to Survive and Recover from Potentially Lethal Health Threats
Back To Top

  • Print

 

Selected DARPA Achievements

DARPA collaborated with industry on stealth technology.
DARPA’s Stealth Revolution
In the early days of DARPA’s work on stealth technology, Have Blue, a prototype of what would become the F-117A, first flew successfully in 1977. The success of the F-117A program marked the beginning of the stealth revolution, which has had enormous benefits for national security.
DARPA microelectronics gave rise to today's GPS devices.
Navigation in the Palm of Your Hand
Early GPS receivers were bulky, heavy devices. In 1983, DARPA set out to miniaturize them, leading to a much broader adoption of GPS capability.
First rough conceptual design of the ARPANET.
Paving the Way to the Modern Internet
ARPA research played a central role in launching the Information Revolution. The agency developed and furthered much of the conceptual basis for the ARPANET—prototypical communications network launched nearly half a century ago—and invented the digital protocols that gave birth to the Internet.
  • About Us
  • About DARPA
  • People
  • Offices
  • Innovation Timeline
  • Testimony
  • Budget
  • History list page
  • Image Gallery
  • Our Research
  • Open Catalog
  • News
  • Events
  • Work With Us
  • Opportunities
  • New Program Managers
  • Contract Management
  • For Industry
  • For Small Businesses
  • For Universities
  • For Government and Military
  • Employment at DARPA
  • Site Info
  • Sitemap
  • Cookie Disclaimer
  • Web Policy
  • Privacy Policy
  • Accessibility/Section 508
  • No Fear Act
  • Whistleblower Protection Act
  • Usage Policy
  • DoD Hotline
  • USA.gov
  • /
  • Freedom of Information Act
  • /
  • Privacy and Civil Liberties
  • /
  • Visitor Information
  • /
  • Contact Us
  • Twitter
  • Facebook
  • YouTube
  • Instagram
  • Linked In
  • RSS
Defense Advanced Research Projects Agency 675 North Randolph Street
Arlington, VA 22203-2114
703.526.6630

This is an official U.S. Department of Defense website sponsored by the Defense Advanced Research Projects Agency.

You are now leaving the DARPA.mil website that is under the control and management of DARPA. The appearance of hyperlinks does not constitute endorsement by DARPA of non-U.S. Government sites or the information, products, or services contained therein. Although DARPA may or may not use these sites as additional distribution channels for Department of Defense information, it does not exercise editorial control over all of the information that you may find at these locations. Such links are provided consistent with the stated purpose of this website.


After reading this message, click  to continue immediately.

Go Back