Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.


The goal of All Together Now (ATN) is to develop theoretical protocols and experimental techniques that enable new collective atom regimes, leading to sensitivities approaching the ultimate fundamental limits of performance. More
Precise timing is essential across DoD systems, including communications, navigation, electronic warfare, intelligence systems reconnaissance, and system-of-systems platform coordination, as well as in national infrastructure applications in commerce and banking, telecommunications, and power distribution. Improved clock performance throughout the timing network, particularly at point-of-use, would enable advanced collaborative capabilities and provide greater resilience to disruptions of timing synchronization networks, notably by reducing reliance on satellite-based global navigation satellite system (GNSS) timing signals. More
Detection of photons—the fundamental particles of light—is ubiquitous, but performance limitations of existing photon detectors hinders the effectiveness of applications such as light/laser detection and ranging (LIDAR/LADAR), photography, astronomy, quantum information science, medical imaging, microscopy and communications. In all of these applications, performance could be improved by replacing classical, analog light detectors with high-performance photon counting detectors. More
Recent advances in our understanding of light-matter interactions, often with patterned and resonant structures, reveal nascent concepts for new interactions that may impact many applications. Examples of these novel phenomena include interactions involving active media, symmetry, non-reciprocity, and linear/nonlinear resonant coupling effects. More
The Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) program aims to exploit quantum information processing before fully fault-tolerant quantum computers are realized. This effort will pursue a hybrid concept that combines intermediate-sized quantum devices with classical systems to solve a particularly challenging set of problems known as combinatorial optimization. ONISQ seeks to demonstrate the quantitative advantage of quantum information processing by leapfrogging the performance of classical-only systems in solving optimization challenges. More
Typically, the performance of measurement devices is limited by deleterious effects such as thermal noise and vibration. Notable exceptions are atomic clocks, which operate very near their fundamental limits. Driving devices to their physical limits will open new application spaces critical to future DoD systems. Indeed, many defense-critical applications already require exceptionally precise time and frequency standards enabled only by atomic clocks. The Global Positioning System (GPS) and the internet are two key examples. More
Based on current quantum mechanical models, the energy density of the quantum vacuum is predicted to be high. Recent advances in fabricating material nanostructures and cavities have fueled the study of vacuum fluctuation-driven phenomena, indicating that the energy density can be modified locally. More