Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

The goal of the DARPA Launch Challenge is to demonstrate responsive and flexible space launch capabilities from the burgeoning industry of small launch providers. For nearly 60 years, the nation’s space architecture has been built around exquisite systems that are launched by large, expensive boosters. The development cycle with the systems is tedious, with a process driven by a desire to reduce risk, rather than deliver timely capabilities. More
The DARPA Subterranean (SubT) Challenge aims to develop innovative technologies that would augment operations underground. The SubT Challenge will explore new approaches to rapidly map, navigate, search, and exploit complex underground environments, including human-made tunnel systems, urban underground, and natural cave networks. More
Understanding the complex and increasingly data-intensive world around us relies on the construction of robust empirical models, i.e., representations of real, complex systems that enable decision makers to predict behaviors and answer “what-if” questions. Today, construction of complex empirical models is largely a manual process requiring a team of subject matter experts and data scientists. More
Deep Purple aims to advance the modeling of complex dynamic systems using new information-efficient approaches that make optimal use of data and known physics at multiple scales. The program is investigating next-generation deep learning approaches that use not only high throughput multimodal scientific data from observations and controlled experiments (including behaviors such as phase transitions and chaos), but also of the known science of such systems at whatever scales it exists. More
The space domain is essential to modern commerce, scientific discovery, and national defense. Maintaining space domain awareness in cislunar space – the volume of space between the Earth and the Moon – will require a leap-ahead in propulsion technology. More
| Space |
The DoD requires timely and comprehensive threat detection to support overall readiness, counter the spread of disease, and promote stabilization missions. State of the art diagnostic and biosurveillance systems are unable to keep pace with disease outbreaks and fail to support decision-making at the time and place of need. The “Detect It with Gene Editing Technologies” (DIGET) program aims to leverage advances in gene editing technologies to develop field-forward diagnostic and biosurveillance technologies that enable detection of any threat, anytime, anywhere. More
The Dialysis-Like Therapeutics (DLT) program aims to support force protection and military readiness by improving critical care in low-resource environments and delivering a new tool for rapid response to emerging infectious disease threats. DLT specifically addresses a life-threatening blood infection known as sepsis, but DARPA is working to expand the DLT technology to also mitigate threats from harmful bacteria, viruses, fungi, and toxic agents in the blood. More
The Digital RF Battlespace Emulator (DRBE) program aims to create the world’s first, large-scale, virtual radio frequency (RF) environment for developing, training, and testing advanced RF systems, such as radar and electronic warfare (EW) systems. The target DRBE environment will enable numerous RF systems to interact with each other in a fully closed-loop RF arena, replicating dense, responsive, real-world RF environments. More