Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

The Communicating with Computers (CwC) program aims to enable symmetric communication between people and computers in which machines are not merely receivers of instructions but collaborators, able to harness a full range of natural modes including language, gesture and facial or other expressions. For the purposes of the CwC program, communication is understood to be the sharing of complex ideas in collaborative contexts. Complex ideas are assumed to be built from a relatively small set of elementary ideas, and language is thought to specify such complex ideas—but not completely, because language is ambiguous and depends in part on context, which can augment language and improve the specification of complex ideas. More
| AI | Autonomy | Data |
The continued growth in unmanned, sensor, and networked devices is expected to drive the need for larger, more capable and more diverse communications systems. Among other enhancements, these systems must improve jam-resistance and low probability of detection to keep pace with adversaries’ growing electronic sophistication and must adapt to fast-changing operational environments. By contrast, today’s military communications architectures are static and inflexible. More
Defense forces rely on electromagnetic dominance for command, control, intelligence, surveillance, reconnaissance, and related applications that use the electromagnetic spectrum. Similarly, spectrum use by our adversaries, coupled with extensive commercial use, yields an increasingly congested space, time and frequency environment. More
System-of-Systems (SoS) architectures are increasingly central in managing defense, national security and urban infrastructure applications. However, it is difficult to model and currently impossible to systematically design such complex systems using existing tools, which has led to inferior performance, unexpected problems and weak resilience. More
Commercial Test and Measurement equipment has advanced greatly with the emergence of sophisticated cellular and wireless local area network technology and can be used to intercept, analyze and exploit our military communications signals. More
A rapidly increasing percentage of the world’s population is connected to the global information environment. At the same time, the information environment is enabling social interactions that are radically changing how and at what rate information spreads. Both nation-states and nonstate actors have increasingly drawn upon this global information environment to promote their beliefs and further related goals. More
The growth of the internet-of-things (IoT) and network-connected composed systems (e.g., aircraft, critical-infrastructure, etc.) has led to unprecedented technical diversity in deployed systems. From consumer IoT devices developed with minimal built-in security, which are often co-opted by malware to launch large distributed denial of service (DDoS) attacks on internet infrastructure, to remote attacks on Industrial Control System (ICS) devices, these newly connected, composed systems provide a vast attack surface. While the diversity of functionality and the scope of what can now be connected, monitored, and controlled over the Internet has increased dramatically, economies of scale have decreased platform diversity. More
Recent technological advances have made the longstanding dream of on-orbit robotic servicing of satellites a near-term possibility. The potential advantages of that unprecedented capability are enormous. Instead of designing their satellites to accommodate the harsh reality that, once launched, their investments could never be repaired or upgraded, satellite owners could use robotic vehicles to physically inspect, assist, and modify their on-orbit assets. That could significantly lower construction and deployment costs while dramatically extending satellite utility, resilience, and reliability. More