Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

Over the last 15 years, the U.S. military has increasingly been called upon to face complex operational environments (OE) and diverse enemies. Such complex OEs require the actions of U.S. forces and host-nation or coalition partners to be based on a common holistic understanding of the OE (e.g., governments, population groups, security forces, and violent non-state actors) and, in particular, the causal dynamics that can manifest as unanticipated and often counter-intuitive outcomes. More
It can cost up to $100 million and take more than two years for a large team of engineers to design custom integrated circuits for specific tasks, such as synchronizing the activity of unmanned aerial vehicles or the real-time conversion of raw radar data into tactically useful 3-D imagery. This is why Defense Department engineers often turn to inexpensive and readily available general-purpose circuits, and then rely on software to make those circuits run the specialized operations they need. More
The Clean-Slate Design of Resilient, Adaptive, Secure Hosts (CRASH) program will pursue innovative research into the design of new computer systems that are highly resistant to cyber-attack, can adapt after a successful attack to continue rendering useful services, learn from previous attacks how to guard against and cope with future attacks, and can repair themselves after attacks have succeeded. Exploitable vulnerabilities originate from a handful of known sources (e.g., memory safety); they remain because of deficits in tools, languages and hardware that could address and prevent vulnerabilities at the design, implementation and execution stages. More
| Cyber | Trust |
The U.S. military’s investments in unmanned aircraft systems (UAS) have proven invaluable for missions ranging from intelligence, surveillance and reconnaissance (ISR) to tactical strike, but most current systems demand continuous control by a dedicated pilot and sensor operator supported by numerous telemetry-linked analysts. More
The explosive growth in mobile and telecommunication markets has pushed the semiconductor industry toward integration of digital, analog, and mixed-signal blocks into system-on-chip (SoC) solutions. Advanced silicon (Si) complementary metal oxide semiconductor (CMOS) technology has enabled this integration, but has also led to a rise in costs associated with design and processing. Driven by aggressive digital CMOS scaling for high-volume products, Intellectual Property (IP) reuse has emerged as a tool to help lower design costs associated with advanced SoCs. More
The Communicating with Computers (CwC) program aims to enable symmetric communication between people and computers in which machines are not merely receivers of instructions but collaborators, able to harness a full range of natural modes including language, gesture and facial or other expressions. For the purposes of the CwC program, communication is understood to be the sharing of complex ideas in collaborative contexts. Complex ideas are assumed to be built from a relatively small set of elementary ideas, and language is thought to specify such complex ideas—but not completely, because language is ambiguous and depends in part on context, which can augment language and improve the specification of complex ideas. More
| AI | Autonomy | Data |
The continued growth in unmanned, sensor, and networked devices is expected to drive the need for larger, more capable and more diverse communications systems. Among other enhancements, these systems must improve jam-resistance and low probability of detection to keep pace with adversaries’ growing electronic sophistication and must adapt to fast-changing operational environments. By contrast, today’s military communications architectures are static and inflexible. More
Defense forces rely on electromagnetic dominance for command, control, intelligence, surveillance, reconnaissance, and related applications that use the electromagnetic spectrum. Similarly, spectrum use by our adversaries, coupled with extensive commercial use, yields an increasingly congested space, time and frequency environment. More