Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

National Security Space (NSS) assets, critical to U.S. warfighting capabilities, traditionally reside in geosynchronous orbit to deliver persistent overhead access to any point on the globe. In the increasingly contested space environment, these exquisite, costly, and monolithic systems have become vulnerable targets that would take years to replace if degraded or destroyed. DARPA’s Blackjack program aims to develop and demonstrate the critical elements for a global high-speed network in low Earth orbit (LEO) that provides the Department of Defense with highly connected, resilient, and persistent coverage. More
How can society responsibly reap the benefits of big data while protecting individual privacy? More
| Data | Privacy |
Modern-day software operates within a complex ecosystem of libraries, models, protocols and devices. Ecosystems change over time in response to new technologies or paradigms, as a consequence of repairing discovered vulnerabilities (security, logical, or performance-related), or because of varying resource availability and reconfiguration of the underlying execution platform. When these changes occur, applications may no longer work as expected because their assumptions on how the ecosystem should behave may have been inadvertently violated. More
Over the last 15 years, the U.S. military has increasingly been called upon to face complex operational environments (OE) and diverse enemies. Such complex OEs require the actions of U.S. forces and host-nation or coalition partners to be based on a common holistic understanding of the OE (e.g., governments, population groups, security forces, and violent non-state actors) and, in particular, the causal dynamics that can manifest as unanticipated and often counter-intuitive outcomes. More
It can cost up to $100 million and take more than two years for a large team of engineers to design custom integrated circuits for specific tasks, such as synchronizing the activity of unmanned aerial vehicles or the real-time conversion of raw radar data into tactically useful 3-D imagery. This is why Defense Department engineers often turn to inexpensive and readily available general-purpose circuits, and then rely on software to make those circuits run the specialized operations they need. More
The Clean-Slate Design of Resilient, Adaptive, Secure Hosts (CRASH) program will pursue innovative research into the design of new computer systems that are highly resistant to cyber-attack, can adapt after a successful attack to continue rendering useful services, learn from previous attacks how to guard against and cope with future attacks, and can repair themselves after attacks have succeeded. Exploitable vulnerabilities originate from a handful of known sources (e.g., memory safety); they remain because of deficits in tools, languages and hardware that could address and prevent vulnerabilities at the design, implementation and execution stages. More
| Cyber | Trust |
An emergent type of geopolitical warfare in recent years has been coined "gray zone competition," or simply "competition," because it sits in a nebulous area between peace and conventional conflict. It’s not openly declared or defined, it’s slower and is prosecuted more subtly using social, psychological, religious, information, cyber and other means to achieve physical or cognitive objectives with or without violence. The lack of clarity of intent in competition activity makes it challenging to detect, characterize, and counter an enemy fighting this way. More
The explosive growth in mobile and telecommunication markets has pushed the semiconductor industry toward integration of digital, analog, and mixed-signal blocks into system-on-chip (SoC) solutions. Advanced silicon (Si) complementary metal oxide semiconductor (CMOS) technology has enabled this integration, but has also led to a rise in costs associated with design and processing. Driven by aggressive digital CMOS scaling for high-volume products, Intellectual Property (IP) reuse has emerged as a tool to help lower design costs associated with advanced SoCs. More