Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

Atom-based devices have proven to be the most accurate means of measuring the physical world. Two areas of great promise are the ability to measure frequency with optically probed trapped atom clocks as well as optically cooled atom interferometer inertial sensors. Together, they could form the basis of a fully autonomous navigation and timing system, free from GPS. Integration of these laboratory based quantum devices into a practical size, weight, and power has proven challenging. Furthermore, replicating these devices at laboratory scale is still resource intensive. More
The process of determining that a software system’s risk is acceptable is referred to as “certification.” Current certification practices within the Department of Defense (DoD) are antiquated and unable to scale with the amount of software deployed. Two factors prevent scaling: (a) the use of human evaluators to determine if the system meets certification criteria, and (b) the lack of a principled means to decompose evaluations. More
| Cyber | Formal | Trust |
For the past decade, cybersecurity threats have moved from high in the software stack to progressively lower levels of the computational hierarchy, working their way towards the underlying hardware. Despite growing recognition of the issue, there are no common tools, methods, or solutions for chip-level security currently in wide use. This is largely driven by the economic hurdles and technical trade-offs often associated with secure chip design. Further, modern chip design methods are unforgiving – once a chip is designed, adding security after the fact or making changes to address newly discovered threats is nearly impossible. More
The Automating Scientific Knowledge Extraction (ASKE) program aims to develop technology to automate some of the manual processes of scientific knowledge discovery, curation and application. ASKE is part of DARPA's Artificial Intelligence Exploration (AIE) program, a key component of the agency’s broader AI investment strategy aimed at ensuring the United States maintains an advantage in this critical and rapidly accelerating technology area. More
The Autonomous Diagnostics to Enable Prevention and Therapeutics (ADEPT) program supports individual troop readiness and total force health protection by developing technologies to rapidly identify and respond to threats posed by natural and engineered diseases and toxins. A subset of ADEPT technologies specifically support use by personnel with minimal medical training, delivering centralized laboratory capabilities even in the low-resource environments typical of many military operations. The program is part of a portfolio of DARPA-funded research aimed at providing options for preempting or mitigating constantly evolving infectious disease threats. More
The Battlefield Medicine program supports military readiness in far-forward deployed settings by overcoming logistical obstacles to manufacturing and delivery of urgently needed pharmaceutical products used to treat emerging threats. More
The Bioelectronics for Tissue Regeneration (BETR) program will develop technology aimed at speeding warfighter recovery, and thus resilience, by directly intervening in wound healing. To do this, researchers will build an adaptive system that uses actuators to biochemically or biophysically stimulate tissue, sensors to track the body’s complex response to that stimulation, and adaptive learning algorithms to integrate sensor data and dictate intervention to the actuators. More
The Biological Control program seeks to support a wide range of potential Department of Defense (DoD) applications by establishing design and control principles that lead to reliable performance in biological systems. Leveraging technologies developed under this program will enable consistent operation of systems that combat biological threats; speed healing after physical trauma; and support military readiness by complementing the body’s natural defenses against emerging diseases. More