Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

Serial Interactions in Imperfect Information Games Applied to Complex Military Decision Making (SI3-CMD) builds on recent developments in artificial intelligence and game theory to enable more effective decisions in adversarial domains. SI3-CMD will explore several military decision making applications at strategic, tactical, and operational levels and develop AI/game theory techniques appropriate for their problem characteristics. More
Partnering rescue personnel with robots to evaluate high-risk scenarios and environments can help increase the likelihood of successful search and recovery efforts while minimizing the threat to human teams. Small robotics systems could provide significant aide in these scenarios, but shrinking down these platforms requires significant advancement of the underlying technology. More
The SIGMA+ program aims to expand SIGMA’s advance capability to detect illicit radioactive and nuclear materials by developing new sensors and networks that would alert authorities to chemical, biological, and explosives threats as well. More
The electromagnetic (EM) spectrum is a scarce resource, in which a variety of friendly, unfriendly and neutral entities contend for available spectrum at any given time, location and frequency. DoD radio frequency (RF) systems, such as communication networks and radar, must operate within the context of an increasingly congested and contested electromagnetic spectrum. More
Dense constellations of low-earth-orbit (LEO) micro-satellites can provide new intelligence, surveillance, and reconnaissance (ISR) capabilities, which are persistent, survivable and available on-demand for tactical warfighting applications. The Small Satellite Sensors program seeks to explore new sensor concepts that are well-matched to the capabilities achievable in small satellites. More
In modern warfare, decisions are driven by information. That information can come in the form of thousands of sensors providing information, surveillance, and reconnaissance (ISR) data; logistics/supply-chain and personnel performance measurements; or a host of other sources and formats. The ability to exploit this data to understand and predict the world around us is an asymmetric advantage for the Department of Defense (DoD). More
SDR and software development kits (SDK) such as GNU Radio exist as free and open source technologies that are widely used in research, industry, academia, government, and hobbyist environments to support both wireless communications research and real-world radio systems. However, even with high end multi-core x86 central processing units (CPU) there are adaptive radar, electronic warfare (EW), and communications applications that cannot be implemented onto SDR with a purely homogeneous CPU due to high latency and power consumption. More
The Space Environment Exploitation (SEE) program seeks to develop new models and sensing modalities to predict and observe the dynamics of the near-earth space environment. The SEE program explores how to go beyond magnetohydrodynamic descriptions of the magnetosphere, ionosphere, thermosphere coupled system to include wave/wave, wave/particle, and particle/particle interactions while using the latest advances in high performance computing such as GPUs and TPUs. More