Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

Autonomy refers to a system’s ability to accomplish goals independently, or with minimal supervision from human operators in environments that are complex and unpredictable. Autonomous systems are increasingly critical to several current and future Department of Defense (DoD) mission needs. More
The Atmosphere as a Sensor (AtmoSense) program is a fundamental science program that seeks to understand the propagation of mechanical and electromagnetic energy from the surface of the Earth through the Earth's ionosphere due to transient events such as meteorological sources, geophysical sources, prompt hazards, etc. For example, an event on the surface of the Earth, such as a volcanic eruption, will produce radially outward longitudinal mechanical perturbations on the atmosphere. More
| Space |
Water transport is as mission-critical and as logistically challenging as fuel transport for the U.S. military. Meeting deployed military water needs requires equipment resources, consumes fuel, and endangers personnel. The goal of DARPA’s Atmospheric Water Extraction (AWE) program is to provide potable freshwater for a range of military, stabilization, and humanitarian needs through the development of small, lightweight, low-powered, distributable systems that extract potable water from the atmosphere to meet the drinking needs of individuals and groups, even in extremely arid climates. More
Precise timing is essential across DoD systems, including communications, navigation, electronic warfare, intelligence systems reconnaissance, and system-of-systems platform coordination, as well as in national infrastructure applications in commerce and banking, telecommunications, and power distribution. Improved clock performance throughout the timing network, particularly at point-of-use, would enable advanced collaborative capabilities and provide greater resilience to disruptions of timing synchronization networks, notably by reducing reliance on satellite-based global navigation satellite system (GNSS) timing signals. More
State-of-the-art magnetometers are used for diverse civilian and DoD applications, among them biomedical imaging, navigation, and detecting unexploded ordnance and underwater and underground anomalies. Commercially available magnetometers range from inexpensive Hall probes to highly sensitive fluxgate and atomic magnetometers to high-precision Superconducting Quantum Interference Device (SQUID) and Spin Exchange Relaxation Free (SERF) magnetometers. More
Manufacturing by assembly provides the flexibility to freely combine materials and components and is fundamental to creating devices from cell phones to appliances to airplanes. However, assembly processes are currently not practical at the nanoscale. The A2P program was conceived to deliver scalable technologies for assembly of nanometer- to micron-scale components—which frequently possess unique characteristics due to their small size—into larger, human-scale systems. More
The process of determining that a software system’s risk is acceptable is referred to as “certification.” Current certification practices within the Department of Defense (DoD) are antiquated and unable to scale with the amount of software deployed. Two factors prevent scaling: (a) the use of human evaluators to determine if the system meets certification criteria, and (b) the lack of a principled means to decompose evaluations. More
| Cyber | Formal | Trust |
The Automating Scientific Knowledge Extraction (ASKE) program aims to develop technology to automate some of the manual processes of scientific knowledge discovery, curation and application. ASKE is part of DARPA's Artificial Intelligence Exploration (AIE) program, a key component of the agency’s broader AI investment strategy aimed at ensuring the United States maintains an advantage in this critical and rapidly accelerating technology area. More