Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

Certain natural processes perform par excellence computation with levels of efficiency unmatched by classical digital models. Levinthal’s Paradox illustrates this well: In nature, proteins fold spontaneously at short timescales (milliseconds) whereas no efficient solution exists for solving protein-folding problems using digital computing. The Nature as Computer (NAC) program proposes that in nature there is synergy between dynamics and physical constraints to accomplish effective computation with minimal resources. More
State-of-the-art military sensors rely on “active electronics” to detect vibration, light, sound or other signals for situational awareness and to inform tactical planning and action. That means the sensors constantly consume power, with much of that power spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months with even the best batteries and has slowed the development of new sensor technologies and capabilities. The chronic need to service or redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger. More
The Network Universal Persistence (Network UP) program seeks to develop and demonstrate radio technology that maintains network reliability through periods of frequent signal degradation that may occur during operations in multiple environments. From time to time, network outages may occur and data transmission may be challenged. More
The Neural Engineering System Design (NESD) program seeks to develop high-resolution neurotechnology capable of mitigating the effects of injury and disease on the visual and auditory systems of military personnel. In addition to creating novel hardware and algorithms, the program conducts research to understand how various forms of neural sensing and actuation might improve restorative therapeutic outcomes. More
The explosive growth of global digital connectivity has opened new possibilities for designing and conducting social science research. Once limited by practical constraints to experiments involving just a few dozen participants-often university students or other easily available groups-or to correlational studies of large datasets without any opportunity for determining causation, scientists can now engage thousands of diverse volunteers online and explore an expanded range of important topics and questions. More
The Next-Generation Nonsurgical Neurotechnology (N3) program aims to develop high-performance, bi-directional brain-machine interfaces for able-bodied service members. Such interfaces would be enabling technology for diverse national security applications such as control of unmanned aerial vehicles and active cyber defense systems or teaming with computer systems to successfully multitask during complex military missions. More
The No Manning Required Ship (NOMARS) program seeks to design a ship that can operate autonomously for long durations at sea, enabling a clean-sheet ship design process that eliminates design considerations associated with crew. NOMARS focuses on exploring novel approaches to the design of the seaframe (the ship without mission systems) while accommodating representative payload size, weight, and power. More
The Nucleic acids On-demand Worldwide (NOW) program aims to develop a mobile medical countermeasure (MCM) manufacturing platform for use in stabilization and humanitarian operations to rapidly produce, formulate, and package hundreds of doses of nucleic acid therapeutics (DNA and/or RNA). More