Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

The DARPA Nitride Electronics NeXt-Generation Technology (NEXT) program had the goal of developing a revolutionary GaN transistor technology to simultaneously achieve high-speed and large voltage swing. The expected outcome of the program was that highly-scaled GaN devices would ultimately benefit the design of efficient millimeter wave power amplifiers and mixed-signal circuits. The NEXT program was successful in developing GaN transistors with deeply scaled gate lengths along with modifications to the heteroepitaxial channel material, ohmic contacts, and overall gate structure, resulting in record performance for GaN devices. More
DARPA’s Mobile Force Protection (MFP) program focuses on a challenge of increasing concern to the U.S. military: thwarting the proliferation of small, unmanned aircraft systems. These systems – which include fixed- or rotary-wing aircraft and have numerous advantages such as portability, low cost, commercial availability, and easy upgradeability – pose a fast-evolving array of dangers for U.S. ground and maritime convoys. More
The goal of the Modeling Adversarial Activity (MAA) program is to develop mathematical and computational techniques for modeling adversarial activity for the purpose of producing high-confidence indications and warnings of efforts to acquire, fabricate, proliferate, and/or deploy weapons of mass terror (WMTs). MAA assumes that an adversary’s WMT activities will result in observable transactions. More
Free-space optics today requires a telescope, bulk lasers with mechanical beam-steering, detectors, and electronics. The Modular Optical Aperture Building Blocks (MOABB) program seeks to design all of these components into a single integrated device. In what would be deemed as the most complex electronic-photonic circuit ever fashioned, the program’s performers will work to create a wafer-scale system that is 100x smaller and lighter than conventional systems and can steer the optical beam 1,000x faster than mechanical components. More
The Molecular Informatics program brings together a collaborative interdisciplinary community to explore completely new approaches to store and process information with molecules. Chemistry offers an untapped, rich palette of molecular diversity that may yield a vast design space to enable dense data representations and highly versatile computing concepts outside of traditional digital, logic-based approaches. More
Attacks by unmanned vehicles, missiles, small planes, fast in-shore attack craft and other platforms pose a perennial, evolving and potentially lethal threat to ships and other maritime vessels. The escalating risks posed by these ever-morphing threats demand that vessels have access to defensive capabilities at the leading edge of air and surface combat technologies. In particular, current close-range gun systems would greatly benefit from an ability to engage multiple and diverse targets coming from a range of directions and do so rapidly and with high precision. More
The purpose of the Multi-Domain Analytics (MDA) program is to enable automated data analysis across networks at different security levels, without manually moving impracticably large amounts of data. Each network contains different sets of data, which must be correlated in order to create a comprehensive context. More
Recent advances in our understanding of light-matter interactions, often with patterned and resonant structures, reveal nascent concepts for new interactions that may impact many applications. Examples of these novel phenomena include interactions involving active media, symmetry, non-reciprocity, and linear/nonlinear resonant coupling effects. More