Defense Advanced Research Projects AgencyOur Research

Our Research

DARPA’s investment strategy begins with a portfolio approach. Reaching for outsized impact means taking on risk, and high risk in pursuit of high payoff is a hallmark of DARPA’s programs. We pursue our objectives through hundreds of programs. By design, programs are finite in duration while creating lasting revolutionary change. They address a wide range of technology opportunities and national security challenges. This assures that while individual efforts might fail—a natural consequence of taking on risk—the total portfolio delivers. More

For reference, past DARPA research programs can be viewed in the Past Programs Archive.

The goal of the EXTREME Program is to develop new optical components, devices, systems, architectures and design tools using Engineered Optical Materials (EnMats) to enable new functionality and/or vastly improve size, weight, and power characteristics of traditional optical systems. EnMats are broadly defined to include, but are not limited to, metamaterials (both metallic and dielectric), scattering surfaces and volumes, holographic structures, and diffractive elements. More
Military service members experience an increased lifetime risk of neuropsychiatric conditions, such as depression, post-traumatic stress, and substance abuse. These conditions are substantially more prevalent in both the active duty population and veterans relative to civilians. More
The Von Neumann architecture has significantly aided the rapid advancement of computing over the past seven decades. However, moving data between the processors and memory components of this architecture requires significant time and high-energy consumption, which constrains the computing performance and workload. Overcoming this bottleneck requires new computing architectures and devices that can significantly advance the computing performance beyond the traditional practice of transistor scaling (i.e., Moore’s Law). More
The Friend or Foe program aims to develop biosurveillance technology that can detect bacterial pathogens as, or even before, they threaten the military and homeland. The goal of the program is to quickly determine whether an unknown bacterium is harmless or virulent by directly identifying pathogenic behavior, avoiding conventional strategies that rely on known biomarkers. More
The goal of the Fundamental Design (FUN Design) program is to determine whether we can develop or discover a new set of building blocks to describe conceptual designs. The design building blocks will capture the components’ underlying physics allowing a family of nonintuitive solutions to be generated. More
Detection of photons—the fundamental particles of light—is ubiquitous, but performance limitations of existing photon detectors hinders the effectiveness of applications such as light/laser detection and ranging (LIDAR/LADAR), photography, astronomy, quantum information science, medical imaging, microscopy and communications. In all of these applications, performance could be improved by replacing classical, analog light detectors with high-performance photon counting detectors. More
FunCC aims to uncover fundamental principles of resilient self-organized complex systems applicable to domains spanning autonomous systems to biological networks, the immune system, and ecosystems. The dynamics and evolution of complex collectives are explored using new frameworks that embrace agent heterogeneity, stochasticity, distributed control, and diffusion of (mis)information. More
Scientific imagination is critical to our economy as well as our national security and defense. Research and development, as an expression of scientific imagination, is now a global and intensely competitive enterprise. This competition is heightened by digital and network disruptors that increase the speed and extend the borders of idea exchange affecting the nature and spread of threats and opportunities. Organizations fundamentally based on shaping the future need to leverage every possible advantage to succeed in this environment. More