Ocean of Things: Low-cost Distributed Sensing with Scalable Analysis for Maritime Situational Awareness

Defense Advanced Research Projects Agency (DARPA)
Program Manager – John Waterston
PROBLEM: Significant gaps in ocean awareness

The military, commercial, and scientific communities desire additional understanding of their environment. Ocean of Things provides **persistent, wide-area, multi-modal** coverage through large scale employment of floats.

- Each float operates for > 1-year using widely available components
- Object and sensor motion allow for the collection of physical and activity-based information
- Multi-sensor fusion and machine learning techniques used to characterize maritime tracks
- Ocean of Things supports multiple missions with its heterogeneous capabilities

Affordably increasing maritime capability and coverage
Ocean of Things Activity

<table>
<thead>
<tr>
<th>Measure</th>
<th>Outputs</th>
<th>Data Products</th>
</tr>
</thead>
</table>
| | • Periodic scalar sensor data
 • Float locations | • Fine resolution environmental data
 • Ocean of Things system performance |

<table>
<thead>
<tr>
<th>Report</th>
<th>Outputs</th>
<th>Data Products</th>
</tr>
</thead>
</table>
| | • Episodic event declarations via Iridium | • Activity cueing
 • Anomaly reports
 • Unique bell-ringer signatures |

<table>
<thead>
<tr>
<th>Fuse</th>
<th>Outputs</th>
<th>Data Products</th>
</tr>
</thead>
</table>
| | • Track reports | • Vessel tracks to common tactical plot
 • Data confidence values |

<table>
<thead>
<tr>
<th>Classify</th>
<th>Outputs</th>
<th>Data Products</th>
</tr>
</thead>
</table>
| | • Contact signatures
 • Platform ID
 • Behavioral norms | • Object/vessel behaviors
 • Intelligence reporting
 • Indications and warnings |

Process: Collect float data to understand ocean activity & environment

TA-1

- Hydrophone
- Radio
- Magnetometer
- Camera
- Hydrocarbon
- pH
- ...

TA-2

PNT: Positioning, Navigation and Timing

CMD Center
Phase 1 Onboard Sensors:

- Sea Surface Temperature
- GPS Position
- Inertial Measurement Unit (IMU)
- AIS Receiver
- Surface Pressure
- Relative Humidity
- Cloud Cover
- Software Defined Radio (SDR)
- Microphone
- Hydrophone
- Camera
- Conductivity
Edge processing includes detection algorithms for numerous events that could potentially correlate to tracks:

- Marine mammals and biologic activity
- Vessel activity
- Anomalies

Priority based queues manage report transmissions:

- Periodic based timelines (e.g., planned health and status)
- Event based reports (e.g., detection above a threshold)
- Queue created and re-prioritized based on observed activity

Transmission size is limited. Working with Float Hardware Performers on efficient transmission management will contribute to improved energy use by the floats while providing valuable, timely data.
Ocean of Things – Data Overview

Dr. Jeff Ellen
Naval Information Warfare Center (NIWC) - Pacific
Phase 2 Proposer’s Day – April 7, 2020

jeffrey.ellen@navy.mil
Outline

▼ Ocean of Things (OoT) Data flow overview
 ▪ Float Report Generation
 ▪ Float Command Sequence
▼ Data/Software Responsibilities
▼ Resources + Access
▼ Software Build Process
▼ Phase 1 Lessons Learned
▼ Summary
Ocean of Things Data Operational Diagram

Data transmitted from TA 1 floats via Iridium

Data to shore via DISA EMSS Gateway

Visualizations hosted by NIWC data center

Data stored in NIWC data center

Algorithms developed by TA2s process data
Float Report Generation

1. Raw data recorded **by TA1 float sensors**
2. Data condensed to reports **by TA1 float encoder**
 - Clever byte packing, summarization, smoothing, etc.
3. Bytes sent as Iridium Mobile Originated (MO) message
4. Bytes sent via TCP to NIWC’s OoT Cloud by Iridium/DISA
5. Bytes unpacked/logged/archived by OoT Gov switchboard
6. Bytes decoded **by TA1-provided** REST endpoint
 - Rich Representation – Avro + JSON
7. Avro posted to Apache Kafka pub/sub streaming pipeline by OoT Gov switchboard
8. Reports consumed by **TA2 Clients**
Float Command Sequence

1. Avro command posted to Kafka pipeline by **TA2 Client**
2. Command consumed by OoT Gov Switchboard
3. Command encoded (as bytes) **by TA1-provided REST endpoint**
4. Bytes sent via TCP to Iridium/DISA by NIWC’s OoT Cloud
5. Bytes queued as Iridium Mobile Terminated (MT) message
6. Float checks inbox after sending MO message
7. Bytes downloaded as MT message by float modem
8. MT message decoded **by TA1 float decoder**
9. Action(s) taken **by TA1 float logic** to follow command
Data/Software Responsibilities

TA1
- Provide encoder / decoder for float messages
- Provide documentation
- Optimize useful data

NIWC
- Host infrastructure
- Provide Access
- Decide formats
- Serve Kafka + Avro
- Verify decoder
- Generate quality test data

TA2
- Use Cloud
- Leverage DevOps
- Consume Kafka
- Follow Schema
- Inform TA1s (report utility)
- Deliver novel data ‘products’
Resources + Access – NRDE GovCloud

▼ NRDE (Naval R&D Environment) - GovCloud
 ▪ DoD Authorized Amazon Web Services
 ▼ Similar to public offerings, but US Hosted, security compliant etc.
 ▼ Entire OoT infrastructure is hosted on AWS
 ▪ Primarily EC2 instances
 ▼ Potential for higher levels of security than UNCLASS
 ▼ Metered access – Paid directly by DARPA
Resources + Access - SkyDesk

- **SkyDesk** – Customized Citrix for access to NIWC network
- Can originate from Windows, MacOS, Linux
- Endpoint is Windows 10 instance hosted on GovCloud
- CAC card required
 - # of CAC per team limited by security principles
 - **Long Lead Time** – reissued not transferred - choose wisely
- Monthly fee paid by DARPA
Resources + Access - Float Status Tool – Gov

- Monitor low-level comms of groups of floats
- Actively developed/supported by NSWC Dahlgren

OoT Float Status

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Status</th>
<th>Comms Timeline</th>
<th>Comms Counts</th>
<th>Comms Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>awate_numurus_dynamic_2_cmc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time Window

Last 24 hours

Float table

- **Status:**
 - command
 - scuttled
 - deployed
 - not_deployed
 - scuttled
 - in_air
 - unknown

- **Vendor:**
 - awate
 - numurus
 - parc
 - usna

<table>
<thead>
<tr>
<th>imei</th>
<th>vendor</th>
<th>status</th>
<th>type</th>
<th>last_comms</th>
<th>last_posn</th>
</tr>
</thead>
<tbody>
<tr>
<td>300234046818010</td>
<td>numurus</td>
<td>not_deployed</td>
<td>CAMERA</td>
<td>2019-12-17 22:09:22</td>
<td>lat: 32.626331, lon: -117.90888, at 2019-12-17</td>
</tr>
<tr>
<td>300234046813200</td>
<td>numurus</td>
<td>deployed</td>
<td>CAMERA</td>
<td>2019-12-20 18:14:29</td>
<td>lat: 32.7877, lon: -118.021286, at 2019-12-20</td>
</tr>
<tr>
<td>300234068729590</td>
<td>numurus</td>
<td>not_deployed</td>
<td>CAMERA</td>
<td>2019-12-17 22:13:18</td>
<td>lat: 32.625576, lon: -117.90593, at 2019-12-17</td>
</tr>
<tr>
<td>300234068729140</td>
<td>numurus</td>
<td>deployed</td>
<td>RADIO</td>
<td>2019-12-18 15:54:52</td>
<td>lat: 32.63456, lon: -117.844108, at 2019-12-1</td>
</tr>
</tbody>
</table>
Resources + Access - Float Status Tool – Gov

- Verify float connectivity
- Ascertain status of tests + deployments

<table>
<thead>
<tr>
<th>OoT Float Status</th>
<th>Status</th>
<th>Commns Timeline</th>
<th>Commns Counts</th>
<th>Commns Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- anita_numurus_dynamic_2_cicm
| Time Window | | | | |
- Last 24 hours

![Graph showing float status with categories: mo_and_mt, mo_only, transaction_failed]
Resources + Access - Float Quicklook Tool

▼ Provides detailed information recent float comms
▼ Provides last #N messages for individual floats + OoT-wide
Resources + Access – Kafka + Avro

- Provides human-readable decoded messages
- Allows browsing of key topics by IMEI

<table>
<thead>
<tr>
<th>Float quicklook</th>
<th>Flows</th>
<th>SBD</th>
<th>Vendor MD</th>
<th>Commands</th>
<th>Recent activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMEI: 300234006813200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor: numerus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status: deployed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last SBD Transaction: 2019-12-20 16:16:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Valid Time: 2020-01-19 18:46:02 UTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refresh</td>
<td>User specified time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_imei</th>
<th>_vendor</th>
<th>_timestamp</th>
<th>id</th>
<th>imei</th>
<th>uptime</th>
<th>heading</th>
<th>float_id</th>
<th>hlat_usage</th>
<th>latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35805</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>230.69</td>
<td>960</td>
<td>less than 50%</td>
<td>32.7817</td>
</tr>
<tr>
<td>2</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35874</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>39.6</td>
<td>960</td>
<td>less than 50%</td>
<td>32.779634</td>
</tr>
<tr>
<td>3</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35813</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>256.1</td>
<td>960</td>
<td>less than 50%</td>
<td>32.76959</td>
</tr>
<tr>
<td>4</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35798</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>256.1</td>
<td>960</td>
<td>less than 50%</td>
<td>32.760987</td>
</tr>
<tr>
<td>5</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35766</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>237.1</td>
<td>960</td>
<td>less than 50%</td>
<td>32.759647</td>
</tr>
<tr>
<td>6</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35741</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>250.1</td>
<td>960</td>
<td>less than 50%</td>
<td>32.756332</td>
</tr>
<tr>
<td>7</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35722</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>202.8</td>
<td>960</td>
<td>less than 50%</td>
<td>32.75426</td>
</tr>
<tr>
<td>8</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35489</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>232.1</td>
<td>960</td>
<td>less than 50%</td>
<td>32.746835</td>
</tr>
<tr>
<td>9</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35303</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>0</td>
<td>960</td>
<td>less than 50%</td>
<td>32.741878</td>
</tr>
<tr>
<td>10</td>
<td>300234006813200</td>
<td>2019-12-20T14:55:02Z</td>
<td>35474</td>
<td>300234006813200</td>
<td>1 day to 3 days</td>
<td>144.89</td>
<td>960</td>
<td>less than 50%</td>
<td>32.736166</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 10 entries
Resources + Access – Kafka + Avro

- Kafka cluster provides incoming message traffic
- Avro schemas create commonality across report types
- Kafka also provides TA2 ↔ TA2 exchange
- Provide documentation for outgoing float commands
- Provide documentation for accessing raw float data (via wifi)
Resources + Access – Kafka + Avro

▼ Existing Data flow + Kafka Topics

Topic: Oot.sbd.mo_data (json)
Content: Raw float binary payloads (+ some metadata)

Python: master_decoder
Algorithm:
- Look up decoder by TA1 (mfr)
- Call mfr REST interface
- Publish resulting Avro/Json

Python: (provided by TA1s)
Algorithm:
- Provide REST endpoint
- Accept Binary payload
- Return JSON/Avro

Topic: arete.data (json)
Content: decoded Arete data

Topic: numurus.data (json)
Content: decoded Numurus data

Topic: oot.reports.* (Avro)
Content: decoded PARC and USNA data

- **Topic: oot.reports.health_and_status**
 Content: float position and operations
- **Topic: oot.reports.environmental**
 Content: temp, salinity, etc.
- **Topic: oot.reports.mission_sensors**
 Content: hydrophone, camera, etc.
Resources + Access - NIWC float deployment

- NIWC deploys floats both pierside and in open water
- Pierside environment is signal-rich
Software Build Process – DevOps Principles

▼ Continuous Integration / Continuous Deployment
 ▪ No mailing discs, minimize delays
▼ Leveraging primarily open source technologies
▼ Di2e – Hosting source code repo
 ▪ DoD instance of BitBucket, Jira, etc.
 ▪ Accessible from internet
 ▪ Accessible from NRDE GovCloud
 ▪ Access controlled via CAC
 ▪ Access limited to own team + Gov
Software Build Process - SUDOE

▼ **SUDOE** - Secure Unified DevOps Orchestration Engine
▼ Dashboard for managing build, deployment, monitoring
▼ Supports many languages (e.g. Java, JavaScript, Python)
▼ Deploys software and infrastructure using micro-services, containers, and virtual machine technologies
 ▪ Currently supports AWS deployment of Docker, Kubernetes, etc.
▼ Manages network and access rules
 ▪ E.g. Routing, ingress, VPC
▼ Provides view of console/errors
▼ Actively being developed by NIWC
Software Build Process – SUDOE Process

1. Check code into DI2E
2. For new code, set up deployment location/size and ingress
3. For existing code, change git commit hash
4. Deploy/redeploy code, monitor error logs

▼ Can also provision EC2/VM for state-preserving exploration (e.g. Jupyter Notebook)
▼ No direct AWS Dashboard login/usage required
Phase 1 Lessons Learned - Inform TA1s

▼ Work with Gov + TA1 to refine onboard data processing
▼ Analyze sample raw data from sensors when available
▼ Analyze past deployments (pierside, SoCal, GoMex)
▼ Gauge usefulness of health & status reports
 ▪ Float battery level, charge rate, status/error codes, scuttle msgs
▼ Assess accuracy and fidelity of environmental reports
 ▪ Temperature, Wave height, GPS trajectories
▼ Determine validity of mission sensor data
 ▪ Evaluate acoustic/radio signal summaries, image analysis
▼ Exercise any parameters/options/priorities TA1s provide
Phase 1 Lessons Learned

- CAC cards require long lead times
- Kafka: Great for pub/sub, less great for archiving
- Avro: be more proactive about defining, enforcing
- DI2E + SUDOE allows rapid code redeployment
- Shore/Pierside deployments more useful than expected
- TA1s need more feedback, earlier
- Oceanographic models are not always correct
Summary

- Request CAC + accounts for key personnel
- Utilize NIWC Gov-Cloud as early as possible
- Utilize SUDOE architecture for CI/CD of all software
- Understand OoT data flow and standards used by OoT
- Utilize existing Gov tools for troubleshooting
- Inform TA1s about utility of report contents, timing, etc.
 - Utilize TA1 provided options/configurations
- Deliver novel data ‘products’, analysis,
Proposals must address all of the following focus areas

• Field Performance and Command and Control
 • Visualization of float location, health, and field capability. Predict field performance resulting from anticipated float movement. Provide commands to floats as needed (e.g., scuttle, activate/deactivate sensors, etc.)

• Track Generation
 • Automation to associate float declarations, initiate a vessel track report, and discriminate between multiple vessels using multi-mode detections

• Data Discovery
 • Understanding of ocean signatures, identification of sensor associations across floats, and generation of many mission products available from the Ocean of Things data set. In addition to recognition of known phenomena, in Phase 2 the performers will identify and categorize new, unknown phenomena
Field Performance Command and Control

• Visualization of float location, health, and field capability
 • Clear reporting of floats position, battery life, duty cycle settings, and any anomalous data

• Predict field performance resulting from anticipated float movement
 • Knowing the current and predicted positions of floats enables the contractor to assess the overall value of the field

• Provide commands to floats as needed (e.g., scuttle, activate/deactivate sensors, etc.)
 • Floats drifting together waste energy by reporting the same information when their duty cycles can be controlled by commands
Float Motion Prediction

Description

• Predict float motion using publicly available current + wind data
• Learn / Optimize parameters used to derive float motion (e.g. current + wind drag)

Communities of Interest

• Navy / DoD – predict field coverage gaps due to natural motion of floats
• Ocean Modeling – Identify limitations to current modeling techniques
• Machine Learning – baseline algorithm + data for improving float motion modeling

Deliveries to the Consumer

• Generate NetCDF files of observed + predicted data

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
Float Field Predictions

24 Hour Prediction

- Real float location after 24 hours

48 Hour Prediction

- Real float location after 2 days

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
• Automation to associate float declarations, initiate a vessel track report, and discriminate between multiple vessels using multi-mode detections

• “Tracks” Are not limited to vessels. An automatically generated track can include (but is not limited to)
 • Ships
 • Marine Mammals
 • Weather Fronts
 • Algae populations
 • Eddies
Simulated Multi-Modal Detections for Track Generation

- 6 modes simulated: Broadband acoustic, AIS, VHF, nav radar, camera, magnetometer

Legend: Magenta = floats; Red = target truth; Cyan, Blue, Green are 3 bands at 1, 4, 9 kHz, respectively

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
• Understanding of ocean signatures, identification of sensor associations across floats, and generation of many mission products available from the Ocean of Things data set

• In addition to recognition of known phenomena, in Phase 2 the performers will identify and categorize new, unknown phenomena

• In Phase 2, the contractor should be able to process and display environmental data for oceanographic and meteorological models

Voronoi cells bounded using shapely convex hull and padding routines yield bounded nearest cells.

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
Environmental Data

- Floats include a variety of hotel sensors to support environmental analysis
 - Sea Surface Temperature
 - Inertial Measurement Unit
 - GPS Position
 - Surface pressure
 - Relative Humidity
 - Solar Flux

- Contractors should be able to take advantage of an unprecedented large field of data to identify features in real-time
 - For instance, using IMUs to sense changes in wave height, utilizing hydrophones/microphones to detect an increase in wind velocity, and surface pressure across the field to detect and track storm events
The plot below shows one performer filtering a float’s reported sea surface temperature to output a temperature which does not include diurnal surface layer heating.

Blue: Reported SST
Purple: Reported SST at night (no solar heating)
Green: Filtered SST
A visual analysis of temperature variability during the night of February 2nd/3rd suggests the presence of a weather front. A north-south gradation of temperature and wave period was obvious in the float field in the early hours of February 3rd.

To better understand the dynamics of this front, we animate the environmental data from the reporting floats in 15 minute increments during this time period. Sensor values are 1 hour averages of reported values, so each animation frame represents a sliding average of reported values. Bounded Voronoi cells are colored according to the closest float’s reading as a distance from the float field mean reading.
Graph represents a composite of all hydrophone files from a single float pierside in San Diego. The blue-ish band at the bottom (100-400 Hz) represents the “ship” band for onboard analysis, the green-ish band (800-3200 Hz) represents the “wind” band.
• Show here UHF Band: 470 MHz – 826 MHz
 • Allocated primarily to digital TV
 • Periodic peaks at consistent frequencies
 • 6-hour masking strategy creates “bands” of peaks around certain frequencies characterizing RF environment
• Possible opportunity:
 • Detecting ship chatter
Automatic detections of pre-defined anomalies is the key to interesting detections and changing today’s ocean models. Examples include:

- Abrupt changes in a float’s track inconsistent with predicted track
 - Detects sub-mesoscale features not shown in today’s oceanographic models
- Increased energy outside normal bands of hydrophone data
 - Detects ships, marine mammals, or high wind
- Abrupt changes in wave height or period
 - Indicate and unpredicted storm event, or the wake of a ship passing by
- Unexpected change in Sea Surface Temperature
 - Could indicate a float has drifted into an eddy not shown in current models

Knowing where the anomalies occur enables the contractor to further investigate the data.
Detecting Anomalies in Trajectory Curvature
<table>
<thead>
<tr>
<th>Metric</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Threshold</td>
<td>Goal</td>
</tr>
<tr>
<td>Field Performance Prediction</td>
<td>Now-cast</td>
<td>24-hour forecast</td>
</tr>
<tr>
<td>Multi-target discrimination</td>
<td>2 targets on orthogonal tracks</td>
<td>2 targets on ~60° divergent tracks</td>
</tr>
<tr>
<td>Track initiation</td>
<td>≤ 8 geo-separated reports</td>
<td>≤ 5 geo-separated reports</td>
</tr>
<tr>
<td>Track continuity</td>
<td>≥ 30% avg. float hold time</td>
<td>≥ 60% avg. float hold time</td>
</tr>
<tr>
<td>Track association</td>
<td>75% if same sensor modality</td>
<td>75% if same sensor modality</td>
</tr>
<tr>
<td>Data discovery</td>
<td>Automatic recognition of known phenomena</td>
<td>Recognition of new phenomena</td>
</tr>
<tr>
<td>Additional Missions</td>
<td>Technical performance measure for additional missions shall be detailed in proposals (DARPA strongly desires innovation in additional mission capabilities beyond track generation and target behavior characterization. Proposals must detail mission specifications and technical performance measure for each additional mission proposed.)</td>
<td></td>
</tr>
</tbody>
</table>
Lessons Learned and Phase 2 Direction

Work towards deliverable data products
• Interact with the consumer communities (meteorological, oceanographic, defense, marine biology, commercial shipping, oil and gas, and any others) early to learn what products they value
• Every algorithm developed should support a data product downloaded by an end user

Collaborate with Float Developers early on
• Early and frequent interface fosters an understanding of what data is being delivered by each individual float
• Understand the data offered by the floats before they go in the water, and influence TA-1s with recommendations for the best way to structure and prioritize data

Do not overdevelop the User Interface
• The interface needs to be usable by a trained operator, but is not the final deliverable in this program
• Function and usability take precedence over “sleek” design

Perform work in the SUDOE cloud interface
• Offline development programs (e.g., Matlab) are not representative of the complexities exhibited working with real-time data in the cloud
• Developing offline does not promote developing a usable interface in the cloud

Refer to the BAA for detailed specifications
Target Track Development

• “Target” in this program is anything that can be described with an associated track, including but not limited to:
 • Ships
 • Marine Mammals
 • Weather Fronts
 • Algae populations
 • Eddies

Environmental Analysis of Interesting Local Features

• Large and sub-mesoscale features off the California Bite
• The Loop Current and associated Eddies in the Gulf of Mexico
• Passing weather fronts

Performers will monitor floats

• Execute float Command and Control
• Analyze float lifecycles
• Support during deployment to address potential issues
Ocean of Things program milestones and schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 1 Hardware (Option of multiple performers)
 • Float design and manufacturing
 • Sensor integration
 • Firmware support</td>
<td>Phase 1
 PDR</td>
<td>Phase 2
 CDR</td>
<td>Modeled Data
 Track 1
 Track 2
 Track 3</td>
<td>Ph 1 Test Data
 Track 1
 Track 2
 Track 3</td>
<td>Ph 2 Test Data
 Track 1
 Track 2
 Track 3</td>
</tr>
<tr>
<td>TA 2 Data Analytics (Option of multiple performers)
 • Three Technical tracks
 1. Track generation
 2. Field performance, architecture, display and C2
 3. Data discovery</td>
<td>1,500 floats @ $1000ea
 1,500 floats @ $1000ea
 1,500 floats @ $1000ea</td>
<td>15,000 floats @ $750ea</td>
<td>Data Curation / Information Logistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government Support Team
 • Data storage and processing
 • Float communications
 • Field deployment
 • Domain expertise</td>
<td>Deployment(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operational Deployment (Phase 3)
 50,000 floats @ $500ea

Real-Time Data

Phase 1
 Ph 1 Test Data
 Track 1
 Track 2
 Track 3
 Modeled Data
 Track 1
 Track 2
 Track 3

Phase 2
 Ph 2 Test Data
 Track 1
 Track 2
 Track 3

PDR

CDR

EA induced slip

Area 1
 SOCAL: 100 x 150 km with 4500 floats

Area 2
 SOCAL: 300 x 500 km with 15,000 floats

EA induced slip

3mo Data Collection

8mo Data Collection

1yr Data Collection

**Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
Relevant Links

Ocean of Things website with data files
- https://oceanofthings.darpa.mil

Ocean of Things Data Analytics Phase 2 BAA
- https://beta.sam.gov/opp/37991fec08e949db80f9e3185d1a319b/view

DARPA Opportunities
Conclusion

Thank you for your interest in Ocean of Things!

Mr. John Waterston
john.waterston@darpa.mil