Breakthrough Biological Technologies for National Security

Kerri Dugan, Ph.D. Director, Biological Technologies Office (BTO)

Briefing Prepared for Research Outreach

04 February 2022

DARPA's Mission: Breakthrough Technologies for National Security

The Heilmeier Catechism

DARPA operates on the principle that generating big rewards requires taking big risks. But how does the Agency determine what risks are worth taking?

George H. Heilmeier, a former DARPA director (1975-1977), crafted a set of questions known as the "Heilmeier Catechism" to help Agency officials think through and evaluate proposed research programs.

- 1. What are you trying to do?
- 2. How is it done today, and what are the limits of current practice?
- 3. What is new in your approach and why do you think it will be successful?
- 4. Who cares? If you are successful, what difference will it make?
- 5. What are the risks?
- 6. How much will it cost?
- 7. How long will it take?
- 8. What are the mid-term and final "exams" to check for success?

BTO Drives Ethical, Legal, and Social Issue (ELSI) Engagement to Ensure Responsible Technology Development

Goal: Flexible ELSI framework to accommodate changing technical & policy landscape

Harnessing Biology to Support the Warfighter

BTO develops capabilities that embrace the unique properties of biology-adaptation, resiliency, complexity-to revolutionize how the United States defends the homeland and prepares and protects its Warfighters

Ways to engage with DARPA

Opportunity	Audience	Topic Specificity	Timing	Duration
Program Specific Broad Agency Announcement (BAA)	General Research	Narrow	Irregular	Up to 5 years (Multiple phases)
Office-wide BAA	General Research	Broad	Rolling	~1 year
Small Business SBIR/STTR	Small Business	Narrow	Rolling	Up to 3+ years (Multiple phases)
Young Faculty Award	Tenure Track Assistant/Associate Professors	Narrow	Annual	Up to 2+ years
Transition Partner	Gov't/Commercial	Narrow	Program Dependent	Partner Dependent
Program Manager	Academia/Gov't/ Industry	Narrow	Rolling	2-4 years

Visit darpa.mil for more information

DIGET Program Overview

Detect It with Gene Editing Technologies

CDR Jean-Paul Chretien, M.D., Ph.D., MC, USN

Program Manager Biological Technologies Office (BTO)

February 4, 2022

Problem: Current diagnostic (Dx) and biosurveillance (BSV) capabilities cannot outpace disease outbreaks, detect emergent threats, or be readily available to operators for decision-making at point of need

Vision: Develop technologies to detect any threat, any time, anywhere to support DoD stabilization and readiness

DIGET will create an end-to-end capability for gene editing based detection to support mission needs

TA1: Detection Assay Design and Development

TA2: Device Development and Deployment

Public Health and National Security Focus Areas DoD-Relevant Panels

Marburg virus, NIAID

Aedes aegypti, CDC

Norovirus, health.mil

•

Respiratory illnesses

• Febrile illness

• Vector-borne illness

Gastrointestinal illness

All proposers **must** focus on at least two DoD relevant panels designated by DARPA

One of these DoD-relevant panels **must** address **disease severity** (e.g., through host biomarkers)

Proposers **may** include additional panels with commercial/industrial transition potential

CONOPS – New Capabilities for Regional Stabilization (Notional) Enhancing Standard of Care, Preparedness, and Situational Awareness

FSHARP Program Overview

Fieldable Solutions for Hemorrhage with bio-Artificial Resuscitation Products

CDR Jean-Paul Chretien, M.D., Ph.D., MC, USN

Program Manager Biological Technologies Office (BTO)

February 4, 2022

Fieldable Solutions for Hemorrhage with bio-Artificial Resuscitation Products (FSHARP)

DoD Problem: The DoD faces challenges in replacing lost blood in forward settings, which could become even more significant in prolonged field care and mass casualty scenarios.

BTO Vision: A field-deployable, shelf-stable whole blood substitute as a hemorrhage countermeasure to sustain warfighters and civilian casualties in austere, pre-hospital settings.

- Whole blood is the optimal resuscitation fluid for treating hemorrhagic shock: Butler et al., J Spec Oper Med 2018.
 - Replaces coagulation factors and platelets.
 - Reverses volume deficit.
 - Restores oxygen-carrying capacity.
- Use of whole blood (stored or fresh) in far-forward settings has logistical challenges:
 - Cold-storage requirement.
 - Limited shelf life requires frequent resupplying.
 - Possible insufficient donor supply for mass casualty.
 - Inability to screen for pathogens in the field.

Photo by Spc. Matthew Diaz https://www.dvidshub.net/image/418360/blood

Reliance on scarce whole blood resources could be alleviated with a shelf-stable, bio-synthetic alternative.

- Synthetic/semi-synthetic components that perform the critical functions of blood in trauma resuscitation.
- Bundles of co-administered components for specific clinical trauma pathophysiologies.

Deliverable: Bio-artificial blood product substitutes that are safe and achieve near parity to natural whole blood functionality.

Biology for National Security

Matthew J. Pava, Ph.D. Program Manager DARPA Biological Technologies Office

Briefing prepared for BTO Research Outreach

February 4, 2022

Targeted Neuroplasticity Training (TNT)

DoD Need: As training personnel is time consuming and low yield, demands of proficiency from various agencies suggest the need for accelerated training methods.

Peripheral Nerve Stimulation Engages Neuromodulatory Circuitry

Training Protocols Engage Task-specific Brain Regions

Goal: Train personnel <u>faster</u> & achieve <u>superior</u> cognitive abilities

Neuromodulator Strengthened Release Synapse

Program Vision: Enhance skill learning in healthy adults by using noninvasive peripheral nerve stimulation to promote synaptic plasticity in the brain

TNT technical challenges and approaches

Current methods for training, learning, and cognitive improvement

 $\left\{ \mathbf{r} \right\}$

Pharmacological Amphetamines; Nicotine; Caffeine;

Methylphenidate

TA1: Biological Foundations Assess behavioral and neural circuitry changes in animal models using invasive and non-invasive nerve stimulation

Potential Connectivity Map

Challenges:

- Determine whether specific nerve engagement is required or if general sensory arousal also results in similar improvements in behavior
- Establish physiological responses for stimulus verification

TA2: Applications for Humans

Demonstrate improvements in cognitive and motor skills in humans using non-invasive nerve stimulation

Differential response to stimulus modality?

Challenges:

- Evaluate whether noninvasive peripheral nerve stimulation generates same outcomes as invasive stimulation
- Translate animal stimulation response profiles to humans

DoD Need: Warfighters living with traumatic brain injury often experience deficits in forming and recalling memories; healthy warfighters require lengthy training to learn new operational skills.

- Develop computational models of neurobiological mechanisms underlying memory and skill learning in humans
- Create a portable neural device for memory restoration in humans
- Enable non-invasive memory enhancement

Program Vision: Memory restoration and enhancement in humans

- Do not target specific functional networks in the brain
- Independent of ongoing dynamic brain function

Small Study: Fatigue Assessment via Breath (FAB)

- \checkmark Tabletop or kiosk fatigue testing using clinical equipment
- ✓ Available at military installations or shipboard only
- ✓ Uses gold standard high resolution gas chromatography mass spectrometry instrumentation (or better)
- \checkmark Enables testing prior to high priority and high risk missions

- \checkmark Objective quantification of fatigue state(s)
- Identify performance/readiness impairment
- ✓ Test results can be made available to commanders

FAB GOALS

- Demonstrate reliable breath-based objective quantification of fatigue and impairment due to fatigue state(s)
- Enable objective individual and unit readiness information to be provided to commanders to prevent mishaps

DoD Need: Legacy concrete-based infrastructure is prone to degradation but possesses neither self-healing nor defect-reporting capabilities

Research and develop engineered, self-sustaining prokaryotic-eukaryotic symbiotic systems that can:

*YFA full proposal submission deadline was 25 Jan 2022

YFA Topic Vision: Engineer biological, cross kingdom symbiotic systems that can integrate with existing concrete materials to augment inspection and repair

Biomanufacturing: Delivering New Operational Capabilities

Anne Cheever, Ph.D. Program Manager Biological Technologies Office

Briefing Prepared for BTO Research Outreach Event February 4th, 2022

Living Foundries: 1000 Molecules (1KM)

Challenge Biomanufacturing & US Department of Defense (DoD) Relevance

The DoD currently lacks a biomanufacturing capability to generate molecules and materials that are high-value, cost-effective, domestically sourced, and high-performing for a broad range of applications

DoD Challenge

OARPO Harnessing Natural Products for Biomanufacturing of Molecules and Materials

From natural chemical reactions

Understanding Earth's biological and metabolic diversity for a broad range of natural chemical reactions

To newly engineered reactions

To biomanufacturing new materials

Assembling genes from different biological sources to form new biosynthetic pathways and

new metabolism

Producing and scaling molecule production for DoD and industry that can bolster, augment, and even replace existing supply chains

DoD Problem: The DoD lacks a biomanufacturing capability for critical molecules and materials that is high-value, cost-effective, domestically sourced, and high-performing

Vision: Develop a versatile rapid design and prototyping foundry for engineering biology

Distribution Statement A. Approved for public release.

Living Foundries Capability

Increase Adaptability While Reducing Logistical Burdens

New biologically derived materials can replace or compliment a range of current DoD capabilities

Increase reactive surfaces through biologically templated materials

MIT-Broad

Phage E3/200 nm

Phage E3/100 nm

LaCoO₃

LaCoO₃

Distribution Statement A. Approved for public release.

550

550

0

Zymergen

10

20

Parts Hardener to cure 100 parts Epoxy

14.65

26.29

Improve physical properties of materials through biology

30

Living Foundries: 1000 Molecules Status

On Track to Meet and Exceed Program Goals – Focus on Transition

Advanced Development Funding FY20-21

Living Foundries Funding

DoD ManTech MII Funding FY21-25

Stakeholders

Distribution Statement A. Approved for public release.

Biomanufacturing: Survival, Utility, and Reliability beyond Earth (B-SURE)

Biomanufacturing: Survival, Utility, and Reliability beyond Earth

33

Biomanufacturing: Survival, Utility and Reliability beyond Earth (B-SURE)

DoD Problem: Material logistics and supply chains for the space domain are complex and tenuous

B-SURE Vision: Develop a fundamental understanding of microbial capabilities for bioproduction in space and biomanufacturing as a potential novel solution for in-space manufacturing

Future operational doctrine in the space domain is predicated on in space manufacturing for a ready supply of materials

USSF Space Capstone

Biomanufacturing

- Common feedstock and fermentation
 hardware
- Water based and non-toxic
- Simple to operate
- Processes adaptable to microgravity

Traditional Manufacturing

- Many Feedstocks and Reagents Required
- Flammable, Volatile, Corrosive, Toxic; Requires highly skilled operators
- Many processes are gravity dependent

DoD Application: Inform capability development for in-space manufacturing and future CONOPS

DARPA

B-SURE will test biomanufacturing variables in support of future space operations

	Determine Microbial Capabilities through Foundational Research Questions (18 months)						
Track 1 Alternative Feedstocks	rack 1 Project optimal inputs for biomanufacturing organisms			Optimize Feedstock Conversion Model mass/energy balance from microbial growth; project biomanufacturing production outcomes			
Track 2 Variable Gravities	Characterizing microbial activity Compare growth and production in analog vs natural low-G			Test production in low-G Tradeoffs between induced gravity vs engineered production			
Track 3 Variable Radiation	Characterizing physiology Lifespan, productivity, and quality of organisms			Test production in high-Rad Impact of radiation levels and tolerance			
	Milestones	9 mos Determine Viability Ranges (Models indicate final exam)	0	Mea (Models proje	18 m asure growth and reporter sigr ect biomanufacturing condition	os al O s)	
ELSI		Issue and Stakeholder Communic			Integration and Risk Mitiga	ion	

Goal: Generates data on variables of microbial engineering for in-situ resource utilization (ISRU) biomanufacturing proof-of-concept, outlining the potential in-space manufacturing capability and future space economy

www.darpa.mil