The U.S. semiconductor landscape

The U.S. military must have access to microelectronics capabilities equivalent to and exceeding those of U.S. adversaries

The U.S. semiconductor industry has notable advantages:

- For approximately two decades, U.S.-headquartered firms have accounted for half of global semiconductor sales.\(^1\)
- The United States has a majority of the global market for integrated circuit design and fabrication, which represents over 80% of the global semiconductor market.\(^1\)
- The top integrated device manufacturer, top three fabless companies, top three Electronic Design Automation companies, and two of the top three equipment manufacturers by revenue are U.S. headquartered.\(^1\)

To confidently maximize these advantages, the U.S. government must be able to verify the confidentiality, integrity, and availability of products in its semiconductor supply chain.

\(^1\) 2017 PCAST report “Ensuring Long-Term U.S. Leadership in Semiconductors”

DARPA is developing technologies to mitigate risks inherent to semiconductor production and to safely leverage more of the available onshore and allied capabilities.
Leading-edge (≤65nm) microelectronics offer specific, military-relevant advantages to the Department of Defense (DoD).

~5 - 10x performance gain from 130nm to 10nm

10x-1000x improvement from CPUs to GPUs & ASICs

Data from ISSCC papers 2010 - 2013 and "Energy Efficient Computing on Embedded and Mobile Devices" on nVidia.com
Leading-edge ASICs under development in MTO programs could deliver revolutionary capabilities to the warfighter

Example ASIC*

- **ACT**: Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays
- **CLASS C**: Distinguish and classify RF signals for 180 hours on a cellphone battery
- **CLASS**: Disguise and dynamically vary signals for inexpensive LPI/LPD comms
- **DAHI**: 10x higher dynamic range arbitrary waveform generator for EW solutions
- **Relimagine**: Collect different data in a single camera frame with a reconfigurable ROIC
- **RF-FPGA**: A software-defined front end that works for 20GHz or below
- **SHIELD**: Verify the authenticity of components at every point in the supply chain
- **SPADE**: Build trusted circuits through 3D integration
- **UPSIDE**: Enable real-time machine learning for object recognition on UAVs

*ASICs from MTO programs

ASIC – application specific integrated circuit
RF – radio frequency
LPI/LPD – low probability of intercept/detection
ROIC – readout IC

DISTRIBUTION A. Approved for public release: distribution unlimited.
Leading-edge ASICs under development in MTO programs could deliver revolutionary capabilities to the warfighter.

ACT
- Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays
- Leverage the world’s best digital beamforming system

32nm SOI vs. 14nm FinFet

SHIELD
Verify the authenticity of components at every point in the supply chain

CLASS
Disguise and dynamically vary signals for inexpensive LPI/LPD comms

CLASIC
Distinguish and classify RF signals for 180 hours on a cellphone battery

UPSIDE
Enable real-time machine learning for object recognition on UAV

DAHI
10x higher dynamic range arbitrary waveform generator for EW solutions

ACT
• Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays
• Leverage the world’s best digital beamforming system

32nm SOI vs. 14nm FinFet

SPADE
Build trusted circuits through 3D integration

RF-FPGA
A software-defined front end that works for 20GHz or below

ReImagine
Collect different data in a single camera frame with a reconfigurable ROIC

Image Source – Northrop Grumman

DISTRIBUTION A. Approved for public release: distribution unlimited.

ASIC – application specific integrated circuit
ACT – Arrays at Commercial Timescales
SOI – Silicon on Insulator
Leading-edge ASICs under development in MTO programs could deliver revolutionary capabilities to the warfighter.

- **CLASS Disguise and dynamically vary signals for inexpensive LPI/LPD comms**
- **SHIELD Verify the authenticity of components at every point in the supply chain**
- **CLASIC Distinguish and classify RF signals for 180 hours on a cellphone battery**
- **UPSIDE Enable real-time machine learning for object recognition on UAV**
- **DAHI 10x higher dynamic range arbitrary waveform generator for EW solutions**
- **ACT Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays**

ReImagine
• Achieve full battlespace awareness with a single reconfigurable ROIC
• Simultaneously collect diverse data types from multiple regions of interest

14nm CMOS

SOA digital ROIC pixel layout using 65 nm CMOS

25 µm

14 nm CMOS pixel with computation

~6 µm

~10 µm

Images courtesy: MIT Lincoln Laboratory

DISTRIBUTION A. Approved for public release: distribution unlimited.
Leading-edge ASICs under development could deliver revolutionary capabilities to the warfighter.

CLASS Disguise and dynamically vary signals for inexpensive LPI/LPD comms

SHIELD Verify the authenticity of components at every point in the supply chain

CLASSIC Distinguish and classify RF signals for 180 hours on a cellphone battery

UPSIDE Enable real-time machine learning for object recognition on UAV

DAHI 10x higher dynamic range arbitrary waveform generator for EW solutions

ACT Capture unprecedented volumes of RF data at 64Gs/sec for next-gen arrays

ReImagine Collect different data in a single camera frame with a reconfigurable ROIC

RF-FPGA A software-defined front end that works for 20GHz or below

SPADE Build trusted circuits through 3D integration

Microscopic SHIELD dielet

- Ensure the authenticity of genuine military electronic components
- Tag electronics at low cost with an encrypted 100µm x 100µm ASIC

14nm CMOS

SHIELD - Supply Chain Hardware Integrity for Electronics Defense

ASIC - application specific integrated circuit
The United States hosts three of the five most advanced leading-edge fabrication facilities onshore.

14-nm fabrication is only available through highly-consolidated, global multinational firms.
However, DoD faces unique security challenges in protecting its microelectronics.

Fabrication & Assembly

Potential Attacks
- Malicious insertion
- Fraudulent products
- Loss of CPI
- Poor quality
- Reliability failures
- Loss of access

Overproduction & Test Fails

Counterfeiting

Hardware or IP theft

Cloning

Design Compromise

Reliability Compromise

Supply Chain Risk

DISTRIBUTION A. Approved for public release: distribution unlimited.
DARPA aims to ensure that DoD can safely access the multiple semiconductor capabilities available to the commercial sector.

Today: DoD leverages one strategic partner for leading-edge microelectronics.

- Trusted Design
- Sole-source Fabrication below 90nm
 - Portions of GLOBALFOUNDRIES
- Trusted DoD Electronics

Commercial Fabrication
- Full access to GLOBALFOUNDRIES
- Samsung
- TSMC
- Intel

Added:
- A new menu of protections
- Trusted circuit analysis tools

Tomorrow: Technology-driven security techniques enable additional options for acquiring state-of-the-art, commercial microelectronics, based on each DoD program’s need.

DISTRIBUTION A. Approved for public release: distribution unlimited.
Selective application of countermeasures can demonstrate "trust through technology" for a representative device.

To ensure security and to leverage the globalized supply chain, DARPA and other agencies are developing a technology-enabled portfolio of protections.
The DARPA solution is a menu of hardware security options that can be selectively applied to tackle known security threats.

<table>
<thead>
<tr>
<th>Protection</th>
<th>Program</th>
<th>Microelectronics Security Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPI Theft</td>
</tr>
<tr>
<td>Strategic Foundry</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Partnerships</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government-proprietary</td>
<td>Other</td>
<td>●</td>
</tr>
<tr>
<td>Fine Disaggregation</td>
<td>TIC (IARPA): Disaggregate ASICs into non-functional parts</td>
<td>●</td>
</tr>
<tr>
<td>Transience</td>
<td>VAPR: Shatter lost, misplaced, or end-of-life ASICs on command</td>
<td>●</td>
</tr>
<tr>
<td>Blended Partnerships</td>
<td>SPADE: Use secure parts to monitor commercial components packaged together into a single ASIC</td>
<td>●</td>
</tr>
<tr>
<td>Functional Disaggregation</td>
<td>DAHI: Disaggregate ASICs into functional subcomponents</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>CHIPS: Establish a library of pre-verified, modular ASIC design IP</td>
<td>□</td>
</tr>
<tr>
<td>Commercial Manufacturing</td>
<td>CRAFT: Apply modularity to reduce ASIC design effort and allow portability across foundries</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>eFuses: Obscure ASIC functionality until after manufacture</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>SHIELD: Authenticate ASICs at any point in the supply chain</td>
<td>□</td>
</tr>
<tr>
<td>Obscuration and Marking</td>
<td>IRIS: Derive an ASICs functionality and reliability</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>TRUST: Reverse engineer ASICs and compare to design</td>
<td>□</td>
</tr>
</tbody>
</table>

TIC - Trusted Integrated Chips
VAPR - Vanishing Programmable Resources
DAHI - Diverse Accessible Heterogeneous Integration
CHIPS - Common Heterogeneous Integration & IP Reuse Strategies
CRAFT - Circuit Realization at Faster Timescales
SHIELD - Supply Chain Hardware Integrity for Electronics Defense
IRIS - Integrity and Reliability of Integrated Circuits
TRUST - Trusted Integrated Circuits
The end of Moore’s Law is leveling the playing field, meaning now is the time to focus on ASIC access and specialization.

Trust through technology

- **Verification and Validation**
- **Obscuration and Marking**
- **Functional Disaggregation**
- **Fine Disaggregation and Transience**
- **Government-proprietary Techniques**

- **Advanced Verification**
- **Design Obscuration**
- **Functional Disaggregation**
- **Gov't-specific features**
- **Certified Trusted Assembly**

14nm commercially-sourced part
High performance
Generic components

90nm trusted part
Program-specific features
Domestic industry base

Acquisition personnel can selectively apply protections based on a component’s criticality, the risks faced, and the need to access leading-edge technologies.