Defense Advanced Research Projects AgencyAbout UsHistory and Timeline

Where the Future Becomes Now

The Defense Advanced Research Projects Agency was created with a national sense of urgency in February 1958 amidst one of the most dramatic moments in the history of the Cold War and the already-accelerating pace of technology. In the months preceding the official authorization for the agency’s creation, Department of Defense Directive Number 5105.15, the Soviet Union had launched an Intercontinental Ballistic Missile (ICBM), the world’s first satellite, Sputnik 1, and the world’s second satellite, Sputnik II… More

Quantum Key Distribution Network
As part of the then three-year-old Quantum Information Science and Technology (QuIST) program, DARPA-funded researchers established the first so-called quantum key distribution network, a data-encryption framework for protecting a fiber-optic loop that connects facilities at Harvard University, Boston University, and the office of BBN Technologies in Cambridge, Mass.
The Grand Challenge
DARPA ran its pathbreaking Grand Challenge with the goal of spurring on American ingenuity to accelerate the development of autonomous vehicle technologies that could be applied to military requirements. No team entry successfully completed the designated DARPA Grand Challenge route from Barstow, CA, to Primm, NV, on March 13, 2004. The event offered a $1 million prize to the winner from among 15 finalists that emerged from a qualifying round at the California Speedway, but the prize went unclaimed as no vehicles were able to complete the difficult desert route.
DARPA paved the way for extended-range unmanned vertical takeoff and landing (VTOL) operations by sponsoring development of another Hummingbird: the A-160, a long-endurance, high-speed unmanned helicopter that flew for 18.7 hours and in 2008 set a world record for endurance in its weight class. The A-160 was part of research pursued by DARPA and the Services to produce a range of autonomous platforms that could team with people to create a more capable, agile, and cost-effective force.
Big Dog
With its sights on robotic pack mules to help warfighter in operations, DARPA initiated a program that yielded BigDog. The robot’s on-board computer controls locomotion, processes sensors, and handles communications with the user. BigDog’s control system keeps it balanced, manages locomotion on a wide variety of terrain, and does navigation. Sensors for locomotion include joint position, joint force, ground contact, ground load, a gyroscope, LIDAR, and a stereo vision system. Other sensors focus on the internal state of BigDog, monitoring the hydraulic pressure, oil temperature, engine functions, battery charge, and others.
Chip-Scale Atomic Clock
The Chip-Scale Atomic Clock (CSAC) program created ultra-miniaturized, low-power, atomic time and frequency reference units. The development of CSAC enabled ultra-miniaturized and ultra-low power atomic clocks for high-security Ultra High Frequency (UHF) communication and jam-resistant GPS receivers.
| History | PNT |
Boosted into geosynchronous orbit on June 21, 2006 aboard a Delta II rocket The Microsatellite Technology Experiment (MiTEx) technology demonstration investigated and demonstrated advanced high-payoff technologies from a variety of potential candidates, including lightweight power and propulsion systems, avionics, structures, commercial off-the-shelf (COTS) components, advanced communications, and on-orbit software environments.
| History | Space |
Revolutionizing Prosthetics
The LUKE arm was developed by inventor Dean Kamen and his colleagues at DEKA Research & Development Corp. as part of DARPA’s Revolutionizing Prosthetics program with additional funding from the U.S. Army Medical Research and Materiel Command. Launched in 2006, DARPA’s program began with a radical goal: develop an advanced electromechanical prosthetic upper limb with near-natural control that would dramatically enhance independence and quality of life for amputees. Working with DARPA and the Department of Veterans Affairs (VA) Rehabilitation Research and Development Service under a federal interagency agreement, DEKA spent years directly engaged with amputees in a number of studies, including VA studies, to better understand how the intersection of biology and engineering could ultimately lead to advanced prosthetic technologies. Mobius Bionics was launched in July 2016 to bring the LUKE arm to market. At a ceremony in New York in 2017, two veterans living with arm amputations became the first recipients of a new generation of prosthetic limb that promises them unprecedented, near-natural arm and hand motion.
In an in-air demonstration in 2007, DARPA teamed up with NASA to show that high-performance aircraft can easily perform automated refueling from conventional tankers. The 2007 demonstration was not entirely automated, however: a pilot was on board to set conditions and monitor safety during autonomous refueling operations.
DARPA Urban Challenge
The DARPA Urban Challenge was held on November 3, 2007, at the former George AFB in Victorville, Calif. Building on the success of the 2004 and 2005 Grand Challenges, this event required teams to build an autonomous vehicle capable of driving in traffic, performing complex maneuvers such as merging, passing, parking, and negotiating intersections. As the day wore on, it became apparent to all that this race was going to have finishers. At 1:43 pm, “Boss”, the entry of the Carnegie Mellon Team, Tartan Racing, crossed the finish line first with a run time of just over four hours. Nineteen minutes later, Stanford University’s entry, “Junior,” crossed the finish line. It was a scene that would be repeated four more times as six robotic vehicles eventually crossed the finish line, an astounding feat for the teams and proving to the world that autonomous urban driving could become a reality. This event was groundbreaking as the first time autonomous vehicles have interacted with both manned and unmanned vehicle traffic in an urban environment.
Orbital Express
The goal of the Orbital Express Space Operations Architecture program was to validate the technical feasibility of robotic, autonomous on-orbit refueling and reconfiguration of satellites to support a broad range of future U.S. national security and commercial space programs. Refueling satellites would enable them to frequently maneuver to improve coverage, improve survivability, as well as extend satellite lifetime. Electronics upgrades on-orbit would provide regular performance improvements and dramatically reduce the time to deploy new technology.
Massive DATA Analysis (TDA)
With the goal of developing analysis techniques for massive data sets, DARPA rolled out the Topological Data Analysis (TDA) program, which ran from 2004 to 2008. Like many other programs, this one spawned a commercial firm, in this case a software firm that remained in business at the posting of this timeline in 2018.
Network (Red Balloon) Challenge
To mark the 40th anniversary of the Internet, DARPA announced the DARPA Network Challenge, a competition that explored the roles that the Internet and social networking play in the timely communication, wide-area team-building, and urgent mobilization required to solve broad-scope, time-critical problems.
| History |
Leveraging past DARPA developments in laser-based versions of RADAR—known as LIDAR, short for light detection and ranging—the High-Altitude LIDAR Operations Experiment (HALOE) provided unprecedented access to high-resolution 3-D geospatial data. First deployed to Afghanistan in 2010, HALOE was one of several DARPA advances directly supporting the warfighter that earned the Agency the Joint Meritorious Unit Award from the Secretary of Defense in 2012.
Falcon HTV-2
DARPA’s Falcon Hypersonic Technology Vehicle 2 (HTV-2) program was a multiyear research and development effort to increase the technical knowledge base and advance critical technologies to make long-duration hypersonic flight a reality. Falcon HTV-2 is an unmanned, rocket-launched, maneuverable aircraft that glides through the Earth’s atmosphere at incredibly fast speeds—Mach 20 (approximately 13,000 miles per hour). At HTV-2 speeds, flight time between New York City and Los Angeles would be less than 12 minutes.
| Air | History |
In collaboration with the Department of Defense’s Joint Improvised Explosive Device Defeat Organization (JIEDDO), DARPA initiated the Vehicle and Dismount Exploitation Radar (VADER) program to design and deploy a radar system for unmanned aerial vehicles (UAVs) or small manned aircraft. Developed for DARPA by Northrop Grumman Electronic Systems, VADER provided synthetic aperture radar and ground moving-target indicator data to detect, localize, and track vehicles and dismounted troops.
Gallium Nitride Transitions
For years, DARPA and its Service partners pursued the technically daunting task of developing high-power-density, wide-band-gap semiconductor components in the recognition that, whatever the end-state task, U.S. forces would need electronics that could operate and engage at increasing range. The result was a series of fundamental advances involving gallium nitride-enabled arrays, which now provide significant benefits in a wide range of applications in the national security domain.