Defense Advanced Research Projects AgencyAbout UsHistory and Timeline

Where the Future Becomes Now

The Defense Advanced Research Projects Agency was created with a national sense of urgency in February 1958 amidst one of the most dramatic moments in the history of the Cold War and the already-accelerating pace of technology. In the months preceding the official authorization for the agency’s creation, Department of Defense Directive Number 5105.15, the Soviet Union had launched an Intercontinental Ballistic Missile (ICBM), the world’s first satellite, Sputnik 1, and the world’s second satellite, Sputnik II… More

Spintronics
1993
In 1993, program manager Stuart Wolf initiated what become a sustained sequence of programs that helped develop the foundations of magnetics-based and quantum microelectronics. The first program, Spintronics, catalyzed the development of non-volatile magnetic memory (MRAM) devices and led to SPiNS, a program that sought to develop spin-based integrated circuits (ICs). During this period, DARPA started a dozen related programs in the field of magnetics and electron spin for microelectronics that collectively helped launch increasingly diverse and complex technologies, including ones that led to astoundingly dense data storage.
DARPASAT
1994
Launched on July 13, 1994, the 198-kg DARPASAT demonstrated the possibility of placing in orbit a lightweight, low-cost payload for enhancing operational defense and warfighting capabilities. The primary performer, Ball Aerospace, oversaw the design, fabrication, integration, and testing of the spacecraft bus, which carried two government-supplied payloads. With frugal management of battery use and thermal loads, DARPASAT surpassed its mission goal of a three-year lifetime by lasting for eight years.
Micrelectromechanical Systems
1994
For many years beginning in 1994, DARPA provided substantial funding in the then emergent arena of micro-electro-mechanical systems (MEMs). With lineage in microelectronics technology, MEMs researchers cleverly adapted standard semiconductor-fabrication methods to fabricate miniature mechanical structures such as flexible membranes, cantilevers, and even trains of interdigitated gears, and integrated these with electronics to create a menagerie of MEM systems. Among the target deliverables for the DoD were inertial navigation devices for smartening up weapons and tracking soldiers, miniaturized “laboratories on a chip” for such uses as detecting biological weapons in the field, and optical switches and displays. DARPA’s patient support is widely credited with adding consequential momentum to the field of MEMs, which since has blossomed into a multi-billion dollar market in the military and civilian sectors.
Sensor-Fuzed Weapon
1994
In 1994, the Sensor-Fuzed Weapon entered the Air Force Inventory. The weapon is an air-to-ground munition designed to meet the Air Force requirement for a general-purpose weapon that provides multiple kills per pass; can be employed over a wide area; functions under adverse weather conditions, at night, in an electronic countermeasures environment; and can be deployed from frontline fighters and bombers. DARPA began work in advanced weapons concepts for the Sensor Fuzed Weapon in the Assault Breaker Program as the Skeet Delivery Vehicle (SDV). In that program and related programs, DARPA developed and demonstrated a warhead and a simple infrared sensor concept leading to a 5.25-inch warhead, a more sophisticated sensor with target discrimination software, and a BLU launching/dispersal system. The smart projectile is a sensor-fuzed warhead comprised of an infrared sensor, a safe and arming device, a thermal battery, and a copper liner. The infrared sensor detects the target and fuzes the warhead to explosively form the copper liner into a kinetic energy projectile that can defeat both armored and soft vehicle targets.
| History |
Microwave/Analog Technology
1995
DARPA launched the Microwave and Analog Front End Technology (MAFET) program in 1995 as a follow-on to the Millimeter Wave Monolithic Integrated Circuits (MIMIC) program, which began in 1987. MAFET aimed to significantly reduce non-recurring costs for microwave and millimeter-wave sensor systems for military applications.
Predator
1995
DARPA developed the first medium-size endurance unmanned aerial vehicle (UAV), Amber, which directly led to the Gnat 750 UAV and the Air Force-operated Tier 2 Predator UAV used in Bosnia. At altitudes of up to 25,000 feet for periods exceeding forty hours, the Predator aircraft operated successfully as an element of Exercise Roving Sands in early 1995 and was deployed in the Bosnia crisis to support UN/NATO operations. Originally a Navy-Army joint effort, the Predator UAV was transitioned to the Air Force in 1995 for operation and maintenance. The Amber Program was initiated in 1984, under DARPA’s rapid prototyping philosophy.
X-31
1995

The X-31 experimental aircraft was designed and built by Rockwell and Messerschmitt-Bölkow-Blohm (MBB), as part of a joint U.S. and German Enhanced Fighter Maneuverability program to improve pilots’ abilities to control the aircraft’s pitch and yaw with more finesse than was possible in most conventional fighters. One outcome was the ability, with the help of design elements such as thrust vectoring, to execute controlled flight at extreme angles of attack at which conventional aircraft would stall or lose control.

DARPA joined the cause by sponsoring tests of the X-31. During a test on November 6, 1992, one of the two X-31s that were built in the program, achieved controlled flight at a 70° angle of attack. On April 29, 1993, the second X-31 successfully executed a swift, minimum-radius, 180° turn using a post-stall maneuver, a maneuver well beyond the ability of conventional aircraft. Of the two aircraft, one survived to the conclusion of the X-31 program in June 1995. That aircraft underwent further research at the U.S. Navy Test Pilot School at Patuxent River Naval Air Station in Maryland. Its ultimate destination was Germany where it remains on display at the Deutsches Museum Flugwerft Schleissheim.

ARPA renamed DARPA, again
1996
With a desire by national leadership to re-emphasize the Agency’s focus on defense matters over commercial ones, ARPA regains its D for Defense to again become DARPA.
Geographic Synthetic Aperture Radar
1996
The Geographic Synthetic Aperture Radar (GeoSAR) program was an airborne radar-based project for simultaneously mapping foliage canopies along with the terrain underneath the canopies. Begun in 1996, the program outfitted a commercial Gulfstream II business jet with a dual-band (P-band and X-band), dual-sided, interferometric mapping radar, designed to efficiently map wide-areas in a single pass of the aircraft.
Schottky IR Imager
1996
From 1973 to 1980, DARPA funded efforts that reduced to practice a totally new concept for obtaining infrared (IR) images of targets. In Desert Strom, warfighters use such imagers to locate tanks and other military equipment buried in the sand. To continue to advance the technology, DARPA funded R&D for a new generation of IR imagers in the mid-90’s.
Soldier 911
1996
SOLDIER 911 is a personal emergency radio that monitors the position of the wearer, and if the soldier approaches a restricted area, the radio alerts the soldier and his or her chain of command. The radio also contains an emergency call button whereby the wearer can call for immediate assistance (hence the “911” name), and a geolocation network report-back system. SOLDIER 911 responded to an immediate need identified in 1995 by the Commander-in-Chief (CINC), Europe, to alert peacekeepers in Macedonia when they were approaching the Serbian border.
| History |
Head-Mounted Displays
1997

With an eye on the future of wearable computers and other technologies that can assist warfighters in daunting acts of multi-tasking, DARPA initiated programs to develop head-mounted displays to enable soldiers to view information with unprecedented ease and efficiency.

Miniature Air-Launched Decoy
1999
In 1999, the first flight test associated with the Miniature Air-Launched Decoy (MALD) program, which begun in 1995, took place. With origins in the tradition of metal radar-confusing chaff dropped from aircraft, the point of MALD was to develop a small, inexpensive decoy missile to counter air defense measures.
PicoSAT
2000
DARPA initiated a microsatellite program featuring extremely small microelectromechanical systems (MEMS) radio frequency (RF) switches. The first picosat mission, launched on January 26, 2000, demonstrated MEMS RF switches operating on a pair of tethered satellites, each one weighing just over one pound. The program demonstrated how constellations of small satellites could work together in the future with dramatically reduced size and power requirements.
High-Productivity Computing Systems
2002
DARPA established its High-Productivity Computing Systems (HPCS) program, with a goal of revitalizing supercomputer research and markets, and incubating a new breed of fast, efficient, easier-to-use and affordable machines. DARPA made initial grants to five key players: IBM, Cray, Hewlett-Packard, Silicon Graphics, and Sun Microsystems.
Personal Assistant That Learns (PAL)
2002
Through its Personalized Assistant that Learns (PAL) program, DARPA created cognitive computing systems to make military decision-making more efficient and more effective at multiple levels of command; reduce the need for large command staffs; and enable smaller, more mobile, and less vulnerable command centers. DARPA worked with military users to refine PAL prototypes for operational use, and with the defense acquisition community to transition PAL technologies into military systems.
| History |