Defense Advanced Research Projects AgencyAbout UsHistory and Timeline

Where the Future Becomes Now

The Defense Advanced Research Projects Agency was created with a national sense of urgency in February 1958 amidst one of the most dramatic moments in the history of the Cold War and the already-accelerating pace of technology. In the months preceding the official authorization for the agency’s creation, Department of Defense Directive Number 5105.15, the Soviet Union had launched an Intercontinental Ballistic Missile (ICBM), the world’s first satellite, Sputnik 1, and the world’s second satellite, Sputnik II… More

Launch of first satellite ever by USSR, sparks creation of DARPA
On October 4, 1957, the Soviet Union (USSR) launched the first satellite ever, triggering events that led to creation of the Advanced Research Projects Agency (ARPA) on February 7, 1958. Although it was well known that both the USSR and the United States were working on satellites for the international scientific collaboration known as the International Geophysical Year (an 18-month “year” from July 1, 1957, to December 31, 1958 and designed to coincide with a peak phase of the solar cycle), many in the United States never fathomed that the USSR would be the first into space. “Now, somehow, in some way, the sky seemed almost alien,” then-Senate Majority Leader Lyndon B. Johnson recalled feeling on that night, adding that he remembered “the profound shock of realizing that it might be possible for another nation to achieve technological superiority over this great country of ours.” Ever since its establishment on February 7, 1958, ARPA—which later added the D for defense at the front of its name—has been striving to keep that technological superiority in the hands of the United States.
| History | Space |
DoD Directive Establishes the Advanced Research Projects Agency
On February 7, 1958, Neil McElroy, the Department of Defense Secretary, issued DoD Directive 5105.15 establishing the Advanced Research Projects Agency (ARPA), later renamed the Defense Advanced Research Projects Agency (DARPA). The Agency’s first three primary research thrusts focused on space technology, ballistic missile defense, and solid propellants
Saturn V and Centaur Rockets

In its first months, ARPA managed and funded rocket development programs that would prove to be long-lived and far-reaching. Among these was a launch-vehicle program under the auspices of Wernher von Braun’s engineering team that would transfer to America’s new civilian space program, the National Aeronautics and Space Administration (NASA). There, von Braun’s initial booster technology, Juno V, would lead to the cluster-engine Saturn V Space Launch Vehicle, famous for its role in manned spaceflight to the Moon.

Another DARPA-authorized program in 1958, development of a liquid oxygen/hydrogen (LOX/LH2) upper-stage rocket known as Centaur, also transferred to the fledgling NASA. After several failures, the Centaur booster achieved its first successful orbital flight in 1963 and its first successful mission in 1966. Centaur rockets improved the ability of U.S. launch vehicles to place sizeable payloads into geosynchronous Earth orbit (GEO) and helped pave the way toward future lunar and deep space missions. During its evolution, the Centaur LOX/LH2 upper stage technology has been used extensively on Atlas and Titan boosters for diverse missions. Centaur engine technology was also used in the upper stages of the Saturn rockets for the Apollo manned missions to the Moon and in the Space Shuttle’s liquid hydrogen-oxygen engines.

First Weather Satellite: Television and Infrared Observations Satellites (TIROS)

Initiated by ARPA in 1958 and transferred to NASA in 1959, the Television and Infrared Observations Satellites (TIROS) program became the prototype for the current global systems used for weather reporting, forecasting and research by the Defense Department, NASA and the National Oceanographic and Atmospheric Administration (NOAA). Moreover, TIROS helped define ARPA’s model of successfully bringing together scientists and engineers from different services, federal agencies, and contracting firms to solve vexing problems and quickly achieve a complex technical feat.

The program greatly advanced the science of meteorology by placing the first dedicated weather satellite in orbit, TIROS 1, on April 1, 1960. The mission swiftly proved the viability of observing weather from space. It took 23,000 cloud-cover pictures, of which more than 19,000 were used in weather analysis. For the first time, meteorologists were able to track storms over the course of several days.

Solid state phased array radar system circa 1959.

Before DARPA was established, a President’s Science Advisory Committee panel and other experts had concluded that reliable ballistic missile defense (BMD) and space surveillance technologies would require the ability to detect, track, and identify a large number of objects moving at very high speeds. Responding to these needs, DARPA in 1959 initiated a competition for the design and construction of a large, experimental two-dimensional phased array with beam steering under computer control rather than requiring mechanical motion of the antenna.

Known as the Electronically Steered Array Radar (ESAR) Program, the focus of the effort was to develop low-cost, high-power tubes and phase shifters, extend component frequency ranges, increase bandwidth, apply digital techniques, and study antenna coupling. DARPA pioneered the construction of ground-based phased array radars such as the FPS-85. This radar system had a range of several thousand miles and could detect, track, identify, and catalog Earth-orbiting objects and ballistic missiles. The FPS-85 quickly became part of the Air Force SPACETRACK system and was in operation from 1962 until the SPACETRACK unit was deactivated in early 1967.

Corona Reconnaissance Satellite
One of the world’s earliest and most well-known spy satellite programs, the now declassified Corona photo-reconnaissance program was jointly funded by DARPA and the Central Intelligence Agency. Withstanding a series of initial failures, the program scored its first success in August 1960 when a canister of film dropped back through the atmosphere was successfully recovered, delivering a trove of intelligence photos taken over Soviet territory. The Corona program continued to acquire crucial Cold War intelligence until the mission ended in 1972.
Interdisciplinary Laboratories and Materials Science
In 1960, ARPA helped establish what now is the burgeoning field of materials science and engineering by announcing the first three contracts of the Agency’s Interdisciplinary Laboratory (IDL) program. Following these initial four-year renewable contracts to Cornell University, the University of Pennsylvania, and Northwestern University, the Agency awarded nine more IDL contracts around the country. The program lasted just over a decade when, in 1972, the National Science Foundation (NSF) took over the program and changed its name to the Materials Research Laboratories (MRL) program.
Transit Satellite: Precursor to Global Positioning System

ARPA launched the first satellite in what would become the world's first global satellite navigation system. Known as Transit, the system provided accurate, all-weather navigation to both military and commercial vessels, including most importantly the U.S. Navy’s ballistic missile submarine force.

Transit, whose concept and technology were developed by Johns Hopkins University Applied Physics Laboratory, established the basis for wide acceptance of satellite navigation systems. The system's surveying capabilities—generally accurate to tens of meters—contributed to improving the accuracy of maps of the Earth's land areas by nearly two orders of magnitude.

ARPA funded the Transit program in 1958, launched its first satellite in 1960, and transitioned the technology to the Navy in the mid-1960s. By 1968, a fully operational constellation of 36 satellites was in place. Transit operated for 28 years until 1996, when the Defense Department replaced it with the current Global Positioning System (GPS).

ARPA Midcourse Optical Station

The Agency initiated the ARPA Midcourse Optical Station (AMOS) program in 1961 with the goal of developing an astronomical-quality observatory to obtain precise measurements and images of satellites, payloads, and other space objects re-entering the atmosphere from space. ARPA located the facility atop Mount Haleakala, Maui, Hawaii, nearly 10,000 feet above sea level.

By 1969, the quality and potential of AMOS had been demonstrated, and a second phase began to measure properties of re-entry bodies at the facility under the Advanced Ballistic Reentry System Project. In the late 1970s, successful space object measurements continued in the infrared and visible ranges, and laser illumination and ranging were initiated.

Other developments such as the compensated imaging program were tested successfully at AMOS. By 1984, the AMOS twin infrared telescopes had become a highly automated system and DARPA transferred it to the U.S. Air Force as one of the primary sensors of the Air Force Space Tracking System. In 1993, the Air Force renamed AMOS as the Air Force Maui Optical and Supercomputing Site.

Project Agile
In what ended up being for the Agency an extremely rare practice of direct or near-direct support of active military operations, ARPA initiated Project Agile in 1961, which grew into a large and diverse portfolio of counterinsurgency research programs in Southeast Asia. The project ran through 1974. Along the way, subprojects included weapons (among them flamethrowers and what became known as the M-16 assault rifle), rations, mobility and logistics in remote areas, communications, surveillance and target acquisition, defoliation, and psychological warfare.

DARPA’s Information Processing Techniques Office (IPTO) was born in 1962 and for nearly 50 years was responsible for DARPA’s information technology programs. IPTO invested in breakthrough technologies and seminal research projects that led to pathbreaking developments in computer hardware and software. Some of the most fundamental advances came in the areas of time-sharing, computer graphics, networking, advanced microprocessor design, parallel processing and artificial intelligence.

IPTO pursued an investment strategy in line with the vision of the office’s first director, J. C. R. Licklider. Licklider believed that humans would one day interact seamlessly with computers, which, in his words, “were not just superfast calculating machines, but joyful machines: tools that will serve as new media of expression, inspirations to creativity, and gateways to a vast world of online information." IPTO was combined with DARPA’s Transformational Convergence Technology Office (TCTO) in 2010 to form the Information Innovation Office (I2O).

oN-Line System
A groundbreaking computer framework known as oN-Line System (NLS) got off the ground thanks to funding from DARPA and the U.S. Air Force. Conceived by Douglas Engelbart and developed by him and colleagues at the Stanford Research Institute (SRI), the NLS system was the first to feature hypertext links, a mouse, raster-scan video monitors, information organized by relevance, screen windowing, presentation programs and other modern computing concepts. In what became known as "The Mother of All Demos," because it demonstrated the revolutionary features of NLS as well as never-before-seen video presentation technologies, Engelbart unveiled NLS in San Francisco on December 9, 1968, to a large audience at the Fall Joint Computer Conference. Engelbart's terminal was linked to a large-format video projection system loaned by the NASA Ames Research Center and via telephone lines to a SDS 940 computer (designed specifically for time-sharing among multiple users) 30 miles away in Menlo Park, California, at the Augmentation Research Center, which Engelbart founded at SRI. On a 22-foot-high screen with video insets, the audience could see Engelbart manipulate the mouse and watch as members of his team in Menlo Park joined in the presentation. With the arrival of the ARPA Network at SRI in 1969, the time-sharing technology that seemed practical with a small number of users became impractical over a distributed network, but NLS opened pathways toward today’s astounding range of information technologies.
Arecibo Observatory

On November 6, 1959, Cornell University signed a contract with ARPA to conduct development studies for a large-scale ionospheric radar probe and how such an instrument might also serve in radioastronomy and other scientific fields. Four years later, on November 1, 1963, an inauguration ceremony was held in Arecibo, Puerto Rico, for the Arecibo Ionospheric Observatory, later to be known more generally as the Arecibo Observatory.

Its telescope "dish"—the largest in the world until 2016 with the completion in China of the FAST dish telescope—is 1,000 feet (305 meters) in diameter,  167 feet (51 meters) deep, and covers an area of approximately 20 acres (0.08 square kilometers). Development of the Arecibo facility was initially supported as part of the DEFENDER program, a broad-based missile defense program. The observatory was designed to study the structure of the upper ionosphere and its interactions with electromagnetic communications signals.

The observatory now is part of the National Astronomy and Ionosphere Center (NAIC), a national research center operated by SRI International, the Universities Space Research Association (USRA), and Universidad Metropolitana (UMET) through a cooperative agreement with the National Science Foundation (NSF). Researchers have tapped the observatory for their studies of ionospheric physics, radar and radio astronomy, aeronomy, and dynamics of the Earth’s upper atmosphere. The facility also helped NASA select lunar landing sites as well as landing sites for the Viking missions to Mars. The observatory remains in use today.


The ARPA Vela program developed sensors to detect nuclear explosions in space, the upper atmosphere, and underwater to support the 1963 Limited Nuclear Test Ban Treaty, under which the United States, Great Britain, and the Soviet Union banned atmospheric tests of nuclear weapons. The first VELA sensors, deployed on a pair of satellites launched three days after the treaty was signed, were designed to monitor for optical and electromagnetic signatures of nuclear explosions in the atmosphere.

Later in the 1960s and 1970s, DARPA oversaw the development of the World Wide Standardized Seismograph Network (WWSSN) for detecting underground nuclear tests. The Agency also helped expand detection technologies globally and internationally by running workshops, funding research projects in other countries, and championing community-building initiatives.


As part of an ARPA-funded experiment to find better ways for computer users to interact with computers, Douglas Engelbart of SRI—who would later work on the DARPA-sponsored ARPANET project, the Internet’s precursor—invented the computer mouse. The first mouse was carved out of wood and had just one button. Later incarnations such as this early Logitech® mouse led to the diversity of mice now on desktops around the world.

The mouse was an early example of many innovations that DARPA would help nurture into various components of the information technology landscape over the next five decades. In What Will Be (HarperCollins, 1997), author Michael Dertouzos credits DARPA with “… between a third and a half of all the major innovations in computer science and technology.”

Project Mac
One of the first major efforts supported by ARPA's Information Processing Techniques Office (IPTO) was the Project on Mathematics and Computation (Project MAC), the world’s first large-scale experiment in personal computing, at the Massachusetts Institute of Technology (MIT). Orchestrated within the general context of broad-based command and control research suggested by the Office of the Secretary of Defense, and based on the vision of the founding IPTO Director, J.C.R. Licklider, Project MAC was oriented toward achieving a new level of human-computer interaction.