Defense Advanced Research Projects AgencyAbout UsHistory and Timeline

Where the Future Becomes Now

The Defense Advanced Research Projects Agency was created with a national sense of urgency in February 1958 amidst one of the most dramatic moments in the history of the Cold War and the already-accelerating pace of technology. In the months preceding the official authorization for the agency’s creation, Department of Defense Directive Number 5105.15, the Soviet Union had launched an Intercontinental Ballistic Missile (ICBM), the world’s first satellite, Sputnik 1, and the world’s second satellite, Sputnik II… More

Geographic Synthetic Aperture Radar
The Geographic Synthetic Aperture Radar (GeoSAR) program was an airborne radar-based project for simultaneously mapping foliage canopies along with the terrain underneath the canopies. Begun in 1996, the program outfitted a commercial Gulfstream II business jet with a dual-band (P-band and X-band), dual-sided, interferometric mapping radar, designed to efficiently map wide-areas in a single pass of the aircraft.
Schottky IR Imager
From 1973 to 1980, DARPA funded efforts that reduced to practice a totally new concept for obtaining infrared (IR) images of targets. In Desert Strom, warfighters use such imagers to locate tanks and other military equipment buried in the sand. To continue to advance the technology, DARPA funded R&D for a new generation of IR imagers in the mid-90’s.
Soldier 911
SOLDIER 911 is a personal emergency radio that monitors the position of the wearer, and if the soldier approaches a restricted area, the radio alerts the soldier and his or her chain of command. The radio also contains an emergency call button whereby the wearer can call for immediate assistance (hence the “911” name), and a geolocation network report-back system. SOLDIER 911 responded to an immediate need identified in 1995 by the Commander-in-Chief (CINC), Europe, to alert peacekeepers in Macedonia when they were approaching the Serbian border.
| History |
Head-Mounted Displays

With an eye on the future of wearable computers and other technologies that can assist warfighters in daunting acts of multi-tasking, DARPA initiated programs to develop head-mounted displays to enable soldiers to view information with unprecedented ease and efficiency.

Miniature Air-Launched Decoy
In 1999, the first flight test associated with the Miniature Air-Launched Decoy (MALD) program, which begun in 1995, took place. With origins in the tradition of metal radar-confusing chaff dropped from aircraft, the point of MALD was to develop a small, inexpensive decoy missile to counter air defense measures.
DARPA initiated a microsatellite program featuring extremely small microelectromechanical systems (MEMS) radio frequency (RF) switches. The first picosat mission, launched on January 26, 2000, demonstrated MEMS RF switches operating on a pair of tethered satellites, each one weighing just over one pound. The program demonstrated how constellations of small satellites could work together in the future with dramatically reduced size and power requirements.
High-Productivity Computing Systems
DARPA established its High-Productivity Computing Systems (HPCS) program, with a goal of revitalizing supercomputer research and markets, and incubating a new breed of fast, efficient, easier-to-use and affordable machines. DARPA made initial grants to five key players: IBM, Cray, Hewlett-Packard, Silicon Graphics, and Sun Microsystems.
Personal Assistant That Learns (PAL)
Through its Personalized Assistant that Learns (PAL) program, DARPA created cognitive computing systems to make military decision-making more efficient and more effective at multiple levels of command; reduce the need for large command staffs; and enable smaller, more mobile, and less vulnerable command centers. DARPA worked with military users to refine PAL prototypes for operational use, and with the defense acquisition community to transition PAL technologies into military systems.
| History |